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Abstract. Software-Defined Networks (SDN) dynamically modify the
paths of Internet flows in response to the quality of service or secu-
rity needs, and hence frequently modify traffic levels at network routers.
Thus network routers often operate in the transient regime, rather than
at steady-state, with significant impact on packet loss probabilities and
delay. We, therefore, investigate the time-dependent performance of a
small network of routers, modelled as G/G/1/N queueing stations. A
diffusion approximation is developed to predict the quality of service
of the routers in the transient regime. Numerical examples show that
the results in the transient regime can differ very significantly from the
steady-state results, and therefore that the transient analysis must be
taken into account in evaluating the performance of routers in a SDN
network.

1 Introduction

The performance of computer networks since its beginnings, was investigated [1,
2] via networks of node queues that contain packets, representing interconnected
routers that forward packets from source to a destination over several hops or
routers. These models are used to compute in steady-state, the network delays
and loss probabilities in routers, and to predict or optimise the overall trans-
mission quality of service. The evolution of computer networks has resulted in
new architectures, methods and models have been adapted and new parameters
introduced.

The increased use of the Internet to carry voice traffic [3], as well as the
Internet of Things, Cloud, Fog and Edge computing [4] brings new challenges
by increasing the variety of network architectures and the complex stochastic
nature of the transmitted flows. Also, the increased use of SDN controllers inside
networks [5–7] creates frequent changes in traffic patterns and paths, and hence
dynamic changes also in the traffic intensity of different paths and of the traffic
carried by routers in the network.



These changes raise a new need for transient analysis since the network is
seldom operating at ”steady-state”. In this context, queueing networks [1] diffu-
sion approximations [8], fluid approximations [9], and network calculus [10, 11]
are some of the mathematical techniques that may be used.

Earlier analytical studies of SDN networks are based on steady-state mod-
els based on discrete Markov chain analysis [12–17] with Poisson flows, or on
network calculus [18, 19] which only provides a rough estimate of network de-
lays, especially when frequent controller decisions modify the traffic load. To
address this concern, in recent work, we have considered a single SDN forwarder
and modelled it with diffusion approximations [20] to determine its transient
behaviour. The accuracy of the diffusion approximation has been examined in
several studies such as [21], and was found to be acceptable with regard to other
forms of analysis such as discrete event simulations which are subject to statisti-
cal confidence intervals and long simulation runs. Therefore in this paper, we will
not present comparisons of the diffusion results with discrete event simulation.

The large scale deployment of the IoT [22] together with Cloud Services [4],
where measured data from sensors is transported to the cloud for decision mak-
ing and the control of cyber-physical systems, has increased the complexity and
challenges of networks that must now ensure better security [23] of the traffic
flows, acceptable quality of service, flexible network management, and energy
optimisation [24]. The introduction of artificial intelligence into network routing
and management [25, 26] also provides greater variability in the flows that tra-
verse the network. Besides, the decoupling of the data plane, the control plane
and the application plane through Software Defined Networks (SDN) [5] gives
carriers, service providers and enterprises more significant control over the way
traffic moves around networks [27, 28] and simplifies network operation, man-
agement and administration. However, it imposes frequent updates of network
paths and of the traffic levels that are carried by the routers, so that the transient
behaviour of network components becomes of great interest.

Recent studies have analyzed SDN networks to optimize steady-state per-
formance using queueing [12–17, 29] and network calculus [18, 19, 30]. However,
SDN Controllers modify the state of the network quite frequently, and these
issues require the analysis of the transient behaviour of a router. However, the
usual tools for network performance are not well adapted to this requirement
since the transient analysis of queueing network models is particularly difficult,
and the discrete event simulation of the transient behaviour of networks is very
time-consuming due to the large number of randomised repetitions that are
needed to achieve a reasonable level of statistical accuracy.

Therefore, in this paper, we address the time-dependent behaviour of a router
using diffusion approximations which offer two essential advantages: packet in-
terarrival and service times distributions do not depend on the usual ”Poisson
and exponential” assumptions, and they lead to computationally efficient results
concerning the system’s transient behaviour. Additionally, the diffusion model
only requires the first two moments of the interarrival and service times, so
that relatively realistic parameters can be based on measured traffic data, and



it provides numerical results which are difficult to obtain with other techniques
[31]. While the approach for steady-state distributions was introduced decades
ago [32, 33] and applied to numerous problems, including to admission control
in industrial telecommunication systems [34], and active queue management for
non-integer PID controllers in IP routers [35], the transient analysis is more
challenging and requires carefully crafted analtical techniques which we use in
this paper.

The features which are in favour of the method are that the diffusion model
of a single server allows general interarrival and service time distributions for
realistic network data, going beyond conventional discrete Markov models. Re-
sults are obtained as queue length and waiting time distributions, simplifying the
analysis of QoS parameters such as delay, jitter and loss probability. Also, net-
works may be hierarchical with any topology and number of nodes, fitting well
the diffusion approximation, which is scalable and decomposes network analysis
into individual nodes.

The numerical examples that we exhibit show that the transient regime can
differ very significantly from the steady-state results. Since SDN controllers fre-
quently change the state of the network paths, including the resulting traffic
intensities and the load of each router, our numerical results show that the tran-
sient analysis will be indispensable in evaluating the performance of routers in
a SDN network.

1.1 Contributions of this paper

In this paper, we develop the transient analysis of the diffusion approximation
approach for small multi-node networks in which SDN controllers’ decisions cause
frequent changes of the paths of flows and hence of the traffic carried by different
forwarders or routers. We compute the dynamics of queue length distributions,
queueing delays, and loss probabilities as a function of changes in traffic intensity,
based on solving a system of partial differential equations for the queue length
distributions and the delays of several interconnected nodes as a function of time.
The analysis we develop allows us to compute a network’s transient behaviour,
and the time it takes for a network to reach its new steady-state after the input
traffic rates change. We can also compute the transient and steady-state packet
loss probabilities in cases when they may be small, and hence very difficult to
obtain via discrete event simulations.

We compute the diffusion transient state step-by-step in short time intervals
with parameters which are specific to each of these intervals. Thus SDN routing
traffic decisions can easily be reflected in successive changes to time-dependent
and state-dependent diffusion parameters. Transient path delay averages can
also be computed from transient node delay averages.

The use of these results are illustrated with two applications:

– In all networks, and in particular those carrying IoT traffic, short and inter-
mittent packet sequences carrying measurement data need to be conveyed
rapidly towards a destination. At the same time, when SDN controllers are



used, long traffic sequences at higher traffic rates may be re-allocated be-
tween paths for purposes of traffic balancing and may disrupt the QoS of
the short sequences. The question then is to determine when the short se-
quences should be forwarded, e.g. just after a major long connection ends,
or just when it begins. Intuitively speaking, one may wish to wait for the
end of the longer and higher traffic sequence in order to obtain a better QoS
for the short packet sequence. The transient analysis recommends that the
short sequence be superposed on the longer higher rate traffic just as the
latter begins, which is counterintuitive, as discussed in Section 4.1.

– The second example is given in Section 4.2, and shows how Service Level
Agreements (SLA) are strongly affected by the use of precise transient anal-
ysis rather than steady-state analysis.

2 Transient Analysis

The diffusion approximation replaces the number of packets in a queueing sys-
tem by the real-valued valued diffusion process X(t) ∈ [0, N ] where N is the
maximum size of the queue. Following the approach in [8], resulting in equations
(1), at the extremities of the interval x = 0 and x = N , two absorbing barriers
are placed so that when X(t) reaches a barrier, it stays there for a random time
and jumps from x = 0 to x = 1 with intensity λ and from x = N to x = N − 1
with intensity µ. The resulting diffusion equation is:

∂f(x, t;x0)

∂t
=
α
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∂x2
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∂f(x, t;x0)

∂x
− βf(x, t;x0)]− µpN (t), (1)

where δ(x) is the Dirac delta function, and f(x, t;x0) = P [x ≤ X(t) < x +
dx | X(0) = x0] of X(t); p0(t) and pN (t) denote probabilities that at time t the
process is in barriers at x = 0, x = N , respectively. The incremental changes
of X(t), dX(t) = X(t + dt) − X(t) are normally distributed with mean βdt
and variance αdt where β, α are coefficients of the diffusion equation, where
β = (λ−µ) and α = (σ2

Aλ
3 +σ2

Bµ
3); 1/λ and 1/µ are the mean interarrival and

service times, and σ2
A, σ2

B are the variances of the interarrival and service time,
respectively.

To determine the solution of (1) we use the following appoach from [36]. First
we consider a diffusion process with two absorbing barriers at x = 0 and x = N ,
started at t = 0 from x = x0. Its probability density function φ(x, t;x0) has the
following form [37]:

φ(x, t;x0) =


δ(x− x0) for t = 0,

1√
2Παt

∞∑
n=−∞

{a(t) + b(t)} for t > 0,
(2)



where

a(t) = exp

[
βx′n
α
− (x− x0 − x′n − βt)2

2αt

]
,

b(t) = exp

[
βx′′n
α
− (x− x0 − x′′n − βt)2

2αt

]
,

and x′n = 2nN , x′′n = −2x0 − x′n.

If the initial condition is defined by a function ψ(x), x ∈ (0, N), limx→0 ψ(x) =
limx→N ψ(x) = 0, then the probability density function (pdf) of the process is

φ(x, t;ψ) =
∫ N
0
φ(x, t; ξ)ψ(ξ)dξ.

The probability density function f(x, t;ψ) of the diffusion process with ele-
mentary returns is composed of the function φ(x, t;ψ) referring to the diffusion
process before it reaches any barrier, and of a spectrum of functions φ(x, t−τ ; 1),
φ(x, t−τ ;N −1). The latter functions represent diffusion processes with absorb-
ing barriers at x = 0 and x = N , started with densities g1(τ) and gN−1(τ) at
time τ < t at points x = 1 and x = N − 1 due to jumps from the barriers:

f(x, t;ψ) = φ(x, t;ψ) +

∫ t

0

g1(τ)φ(x, t− τ ; 1)dτ

+

∫ t

0

gN−1(τ)φ(x, t− τ ;N − 1)dτ (3)

where the densities g1(τ), gN−1(τ), as well as p0(t) and pN (t), are obtained from
the probability balance equations at the barriers.

The delay through the queue, including waiting and service time, is then
obtained as a first passage time from an initial point taken with probability
given by f(x, t;ψ) to the absorbing barrier placed at x = 0.

3 Transient Analysis of a Network

Consider a network of M stations with general service time distributions and
routing probabilities rij . We first decompose the network by determining the
input flows at each station and then apply the single server model to each station
separately.

In the transient state the input flow λi−in(t) of any station i and its output
flow λi−out(t) = (1 − p0(t))µi are different. The traffic equations balancing the
flows of stations are

λi−in(t) = λ0i(t) +

M∑
j=1

λj−out(t)rji , i = 1, . . . ,M, (4)

where the first term λ0i represents traffic flow coming directly to station i from
the outside of the network. Denote by fAj(x, t) and fBj(x, t) the density func-
tions of interarrival and service times at station j; the pdf fDj(x, t) of the inter-
departure times from this node at time t is

fDj(x, t) = %j(t)fBj(x, t) + [1− %j(t)]fAj(x, t) ∗ fBj(x, t), i = 1, . . . ,M (5)



where * denotes the convolution and i = 1, . . . ,M . The first term of (5) repre-
sents the interdepature times of packets when the node is busy, and the second
term gives the interdeparture times when it is idle. The formula (5), known
as Burke’s theorem, is exact for Poisson input and approximate in other cases.
From (5) we have:

C2
Dj(t) = %2j (t)C

2
Bj(t) + C2

Aj(t)(1− %j(t)) + %j(t)[1− %j(t)]. (6)

Packets leaving the node j according to the distribution fDj(x, t) choose any
node i with probability rji and the times between packets routed from node j
to i has pdf:

fji(x, t) = fDj(x, t)rji + fDj(x, t) ∗ fDj(x, t)(1− rji)rji + · · · (7)

The variance of fji(x, t) allows us to determine the variance of the number of
customers going from station j to i, and after summing over all stations sending
packets to station i we receive

C2
Ai(t) =

1

λi−in(t)

M∑
j=1

rjiλi−out(t)[(C
2
Dj(t)− 1)rji + 1] +

C2
0i(t)λ0i(t)

λi−in(t)
, (8)

where the parameters λ0i and C2
0i refer to the flow coming to i from outside of

the network, and (6), (8) form a system of linear equations yilding C2
Ai(t) and,

in consequence, the diffusion parameters βi(t), αi(t) for evry node i.
If fRi(x, t) is the response time pdf at node i, then the response time pdf for

the path 1, . . . , n is fR = fR1(x, t) ∗ fR2(x, t) ∗ fR3(x, t) ∗ · · · ∗ fRn(x, t).

3.1 Packet Service Time for a SDN Data Plane Router

In SDN, routes are selected by one or more SDN controllers, while the SDN data
plane routers are forwarding devices that follow the rules given by the controller.
The centralisation of network intelligence and management in the controller
enables a global network view, network programmability and deployment of
innovative approaches such as smart cognitive routing [27].

Since the input and output hardware of an SDN forwarder is fast, the actual
forwarding time between nodes can be neglected. However, the main component
of service time that needs to be considered is the time during which the node’s
hardware identifies – for each successive packet – the flow to which the packet
belongs, and in which output port the packet must be placed:

– Assume that the identification of the flow is conducted as a linear search in
a flow table withK entries (i.e. the number of flows), and that T is the time
to check one entry. If p is the probability that the router’s flow table does not
contain the flow rule for a given packet, this will be discovered after going
through all Kpositions, i.e. after time KTwhich is a constant service time
with zero variance.



– Otherwise, with probability (1 − p), the time to find the existing entry is
uniformly distributed in [T,KT ] for a simple linear search, since the packet

is equally likely to belong to any of the flows, with mean (K+1)T
2 and variance

(K2−1)T 2

12 .
– As a result, the service time S has the following mean and variance:

E[S] = T [pK + (1− p)K + 1

2
], V (S) = (1− p) (K2 − 1)T 2

12
.
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Fig. 1. Queue length Probability Density Function for node S1 at time t = 0.15 with
different values of C2

A1.

4 Numerical Examples

We consider a network composed of 4 forwarders. Host 1 is sending packets
to Host 2 through forwarders S1-S2-S4 or S1-S3-S4, with routing probabilities
r12 = 0.15, r13 = 0.85. The packet traffic rate from Host 1 is denoted λ(t) in the
range of 500 to 2500 packets/sec, and the changes in the traffic rate the pattern
of is displayed in blue in all the figures. It is the total flow sent by S1; the flows
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Fig. 2. Queue length pdf for node S1 at time t = 0.75 with different values of C2
A1.

of S2 and S3 are defined by the routing probabilities. The duration of the time
interval being considered is 1 second.

Traffic data from the CAIDA traces [38] concerning IPv4 packet interarrival
times from the Equinix Chicago link, collected during one hour on 18 February
2016, gave C2

A1 = 1.02 with over 22 million packets belonging to over 1:17
million IPv4 flows. The computations were also carried out for four and eight
times larger, values C2

A1 to see how these variations influence the network’s
performance. We assume that the switches store K = 950 flows and that the
time to examine one flow in the flow table is T = 8 · 10−7sec with p = 0. The
resulting mean service time is S = 1/µ = 0.038msec or µ = 2, 631.5 packets/sec
and C2

B = 0.33. The buffer capacity per flow is N = 100. These values are
compatible with existing equipment but may vary with the type of router.

The transient solution is obtained numerically for 100 successive sub-intervals
of the length 10 msec in 100 sub-intervals with fixed diffusion parameters in each
sub-interval. At the end of each sub-interval (4), (8) are solved to determine new
parameters of the flow for the single station models in the next interval. The
density function fi(x) obtained for any station i at the end of an interval gives
the initial conditions for the diffusion equation at the next interval.

Figure 1 and 2 present f(x, t : ψ) given by (3) for station S1. In the first
case, the buffer is relatively empty, i.e. the probability of the queue size being
close to N is of the order of 10−30 or 10−70. Note that the probability scale
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is logarithmic, and the method has no difficulty to compute such small values,
which would be impossible in a simulation model. We see also the impact of C2

A1

which affects α in the diffusion equation; a greater C2
A1 increases the probability

of larger queue lengths. Figures 3 and 4 show the changes in the utilisation rate
%i(t) of stations and the interdeparture time C2

D1 from (6), as λ(t) is varied,
showing that %(t) and C2

D1 follow the variations in λ(t) closely.
Figures 5 and 6 refer to station S1 and shows the variation of mean queue

length for various values of C2
A1. The queue length increases considerably with

the variance of interarrival times, and the duration of the transient period also
increases. Higher utilisation rates due to larger λ lead to a longer transient
period. For large λ, the steady-state is not attained before the next change of
the input flow rate. The right-hand figure illustrates the significant influence of
C2
A1 on the loss probabilities, which are presented in logarithmic scale.

Figures 7 and 8 present the dynamics of the average queue length and delay at
stations S1, S2, S4, and the total average delay along the path S1-S2-S4. Again,
we see the influence of the traffic rate on the queue length and the duration of the
transient period. For higher traffic rates, the transient time is, in general, longer
than the periods between changes in λ so that steady-state is never reached.

Figures 9 and 10 display the loss probabilities for each station separately, and
the total loss probability for two paths S1-S2-S4, S1-S3-S4, which are practically
the same and they superimpose. These figures also illustrate the method’s ability
to compute very small probabilities of the order of 10−200.

4.1 Scheduling Short Sequences of Packets

Consider a short sequence of a few packets (of very low traffic rate) containing
measurement traffic, emanating for instance from some IoT sensor, which is very
sensitive to packet loss. Suppose the SDN controller establishes a connection,
to be able to forward these packets at time 0.4 seconds along path S1− >
S2− > S4. At the same time, the SDN controller also establishes a connection for
another flow totalling 1000 packets/sec. Suppose also that when this connection
was established this same path was already carrying 1500 packets/sec.

The question then is whether the source of the low data rate measurement
traffic should wait for the high data rate traffic to end before forwarding its
traffic. Of course, waiting has the disadvantage of incurring the waiting delay,
which may be quite long. However, if the data traffic is very sensitive to losses,
it may be better to wait for the high traffic rate flow to end.

The analysis that is illustrated in Figure 10 tells us that the low data rate
IoT source should not wait at all. It should send its traffic right away as soon as
the path S1− > S2− > S4 is established for the IoT traffic at time 0.4 seconds,
simply because of the transient behaviour of the packet loss probability which is
less than 10−13 in the period just after time 0.4 seconds. In addition to avoiding
the wait for the high traffic rate to end, the instant when the high traffic rate
ends at time 0.7 seconds and the following 0.1 seconds will have a much higher
packet loss probability of the order of 10−7 due to the transient effect in packet
loss. In addition, the transient analysis of Figure 8 also tells us that the mean



wait delay incurred by the packets is of the order of 0.004 seconds, rather than
the 0.3 seconds that would be wasted waiting for the high traffic rate to subside.

Obviously, this type of very useful insight about the transients in packet loss
and delay can only be obtained via the transient analysis tools developed in this
paper.

4.2 The Effect of Transients on Service Level Agreements

A high priority customer of the network needs to send a flow of packets every
30 minutes from node 1 to node 4 during a short time window of ∆ = 200
milliseconds. The customer indicates that the traffic rate λ1 may take a fixed
value between 2500 and 3200 packets/second, and that that the inter-arrival
time distribution for packets will have a squared coefficient of variation which
does not exceed C = 2.

– The customer has stringent QoS constraints so that the network operator
must abide by a Service Level Agreement (SLA): the total average packet
delay through the path must not exceed Wm = 0.01 during the connection,
and the total average packet loss over the path must not exceed Lm = 150.

– Due to the existing network topology, to reach node 4, the traffic must travel
through the three identical router sS1− > S2− > S4. The network operator
will program a SDN controller to set up a private 3-node path S1− > S2− >
S4 for this flow, at the beginning of each successive 30 minute interval, and
reserve it (empty of other traffic) for 200 milliseconds. After 100 milliseconds,
this flow stops sending packets, and the SDN controller can re-allocate the
path to other flows.

– The operators current routers have a 2000 packet/second forwarding capac-
ity. The operator would like to know if this is sufficient, or whether she/he
should upgrade the hardware to higher available speeds of 2300, or 2600 or
2900 packet/second.

Let t = 0 be the beginning of an interval of length ∆, and Ni(t) be the average
number of packets from the flow in router i, at t seconds after the beginning of
the flow. Let:

Wmax = Smax
t∈∆

[N1(t) +N2(t) +N4(t)], (9)

Lmax = max
t∈∆

[L1(t) + L2(t) + L4(t)], (10)

where Wmax, Lmax are the worst case values of the packet delay and loss for
the flow rate, starting at t ∈ [0, ∆] Due to the existing network topology, to
reach Node 4 the traffic must travel through the three identical routers S1− >
S2− > S4. After ∆ = 200 milliseconds this particular flow stops sending packets,
and the SDN controller can re-allocate these nodes to other flows. We compute
Li(t) = λiProb[fi(N, t)], where N is the router buffer size, and obtain Wmax,
Lmax as a function of λ1 for the worst case value C2

A1 = 2, and different router
speeds, to see which speed is needed.



The transient diffusion model yields Wmax, Lmax as shown in Figures 11 and
12, (in full lines) plotted against λ1 for different values of S = µ−1. The figures
also show (in dotted lines) the values of the steady-state values of average delay
and loss rate.

W =
1

µ
lim
t→∞

[N1(t) +N2(t) +N4(t)], (11)

Lmax = lim
t→∆

[L1(t) + L2(t) + L4(t)], (12)

We see that the transient analysis allows us to operate safely with routers having
a capacity of µ = 2000packets/sec, while the steady-state analysis over-estimates
the average delay and loss probability by over 100%, and recommends upgrading
the routers to a packet processing capacity of at least 2600 packets/sec.
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Fig. 11. Wmax as in Eq. (12) for various λ1 (solid line) compared with steady state
solution (dotted line)

5 Conclusions

This paper considers a small network of routers or forwarders in a network con-
trolled by a SDN controller which makes changes to paths through the network,
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and regularly modifies traffic rates at different routers. Our purpose is to evalu-
ate the effect of transient effects and in particular their importance relative to
usual steady-state analyses which have been studied. We, therefore, develop a
computationally efficient diffusion approximation method, present its analytical
solution, and implement the numerical techniques needed for the transient com-
putations. Using realistic parameters, including relatively low-frequency changes
of paths by SDN controllers every 100ms, we show that the system may seldom
reach steady-state when the network is moderately to heavily loaded which is the
region of interest for performance modelling and optimisation studies. Though
at light loads transients are short, at moderate to heavy loads transients are
significant for individual node and path delays, and packet loss probabilities.
The method we have developed is operational and gives quantitative results for
models with realistic parameters.

Numerical examples for single and multiple node models provide the dynam-
ics of queue lengths, delays and packet loss and their dynamics in response to
changes in the flow intensity and the variance of interarrival times. Through
numerical examples, we also show how transient analysis provides insights that
are more accurate and cover cases where the steady-state analysis would pro-
vide wrong or incomplete results. Thus we conclude that transient analysis can
play a major role in the performance evaluation of SDN networks and should be
incorporated into SDN controls and that diffusion approximations can be useful
and computationally efficient for this purpose.
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