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Abstract in Polish

W tej rozprawie wykazujemy, że adaptacyjne schematy rozróżniania mogą popra-
wić rozróżnialność pomiarów kwantowych. Istnieją trzy podstawowe podejścia
do badania problemu rozróżnialności: rozróżnianie symetryczne, jednoznaczne i
asymetryczne.

Celem rozróżniania symetrycznego jest zminimalizowanie prawdopodobieństwa
podjęcia błędnej decyzji, a więc maksymalizacja prawdopodobieństwa, że rozróż-
nianie się powiodło. Drugie podejście nazywane jest rozróżnieniem jednoznacznym.
Wykorzystując to podejście, jeżeli otrzymamy rozstrzygający wynik rozróżniania,
możemy być pewni, że jest on poprawny. Istnieje jednak szansa uzyskania wyniku
nierozstrzygającego. Trzeci podejście, jakim jest rozróżnianie asymetryczne, znane
jest również jako certyfikacja i opiera się na statystycznym testowaniu hipotez. W
tym podejściu rozważamy oddzielnie błędy fałszywie dodatnie i fałszywie ujemne.

W podstawowym schemacie rozróżniania zakładamy, że jeden z dwóch pomiarów
kwantowych, których opisy klasyczne są nam znane, jest potajemnie wybrany i
schowany w czarnej skrzynce. Tej skrzynki nie można otworzyć, ale możliwe jest
użycie pomiaru, który znajduje się wewnątrz niej. Przygotowujemy jako stan
wejściowy stan kwantowy, który może być splątany z dodatkowym systemem. Na-
stępnie jest on mierzony przy pomocy pomiaru znajdującego się w czarnej skrzynce.
Na podstawie otrzymanej etykiety pomiaru dokonujemy pomiaru dodatkowego
systemu. Jego wynik pozwala na podjęcie decyzji, który z pomiarów znajdował się
w czarnej skrzynce.

Wszystkie trzy podejścia do problemu rozróżniania są w pierwszej kolejności
badane w sytuacji, gdy czarna skrzynka, która zawiera jeden z dwóch pomiarów,
może być dostępna tylko raz. Potem badamy również równoległy schemat rozróż-
niania oraz najbardziej ogólny schemat adaptacyjny, który dopuszcza wykonywanie
dodatkowych procedur pomiędzy kolejnymi zapytaniami do czarnej skrzynki. Dzięki
temu możliwa jest modyfikacja stanu wejściowego dla kolejnego zapytania. Teza
tej rozprawy brzmi: Schematy adaptacyjne mogą ulepszyć rozróżnianie pomiarów
kwantowych.

Niniejsza rozprawa składa się z siedmiu rozdziałów i dwóch dodatków. Roz-
dział 1 zawiera wprowadzenie i motywację, jaka towarzyszyła napisaniu tej pracy.
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Preliminaria matematyczne, podstawowe pojęcia kwantowej teorii informacji i
wprowadzenie narzędzi matematycznych znajdują się w rozdziale 2. Rozróżnianie
symetryczne pomiarów kwantowych jest badane w sytuacjach pojedynczych i wie-
lokrotnych odpowiednio w rozdziałach 3 i 4. Badania rozróżnienia jednoznacznego
znajdują się w rozdziale 5. Rozdział 6 jest poświęcony rozróżnianiu asymetrycz-
nemu. Końcowe uwagi i wnioski można znaleźć w rozdziale 7. Na końcu pracy
znajdują się dwa dodatki, które zawierają dowody twierdzeń, które nie znalazły się
w tekście głównym.
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Abstract in English

In this dissertation, we demonstrate that adaptive discrimination schemes can im-
prove the discrimination of quantum measurements. The problem of discrimination
of quantum measurements is studied in three approaches, which are: symmetric,
unambiguous and asymmetric discrimination.

Symmetric discrimination is also known as minimum error discrimination. Its
goal is to minimize the probability of making an erroneous decision, thus maximizing
the probability that the discrimination is correct. The second approach is called
unambiguous discrimination. In this approach, whenever we get the conclusive
result of discrimination, we can be sure that it is correct. However, there is a
chance of getting an inconclusive result of discrimination. The third approach,
which is asymmetric discrimination, is also known as certification, and it is based
on statistical hypothesis testing. This time, we consider the false positive and false
negative errors separately.

In the basic discrimination scheme, we assume that one of two quantum mea-
surements, which both classical descriptions are known, is secretly chosen and
hidden in a black box. This box cannot be opened, but we can use measurement
inside the black box. We prepare as input some quantum state, which can be
entangled with some additional system. Then, we perform the measurement in the
black box and basing on the measurement label, we measure the additional system.
Eventually, basing on the outcome of the last measurement, we decide which of
these measurements was contained in the black box.

All three approaches to the discrimination problem are first studied in the
single-shot scenario, when the black box containing one of two measurements can
be accessed only once. We also study the parallel discrimination scheme as well as
the most general – adaptive scheme. The adaptive discrimination scheme allows for
performing processing between subsequent queries to the black box, thus modifying
the input for the subsequent query. The thesis of this dissertation concerns both
multiple-shot discrimination schemes and states: Adaptive schemes can improve
the discrimination of quantum measurements.

This dissertation consists of seven chapters and two appendices. Chapter 1
provides a general introduction and motivation. Mathematical preliminaries, basic
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notions of quantum information theory and various useful mathematical tools are
introduced in Chapter 2. Symmetric discrimination of quantum measurements is
studied in single-shot and multiple-shot cases in Chapters 3 and 4, respectively.
Unambiguous discrimination of quantum measurements is explored in Chapter 5.
The following Chapter 6 is devoted to asymmetric discrimination. Final remarks
and conclusions can be found in Chapter 7. There are also two appendices, which
provide proofs which were too long and technical to be contained in the main text.
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Chapter 1

Introduction

The problem of discrimination of various objects lies at the center of interest in
many areas of technical and theoretical informatics. Machine learning algorithms
are spreading far and wide and are currently inextricable elements of everyday life.
Their applications range from banking, medicine and science and go far beyond
that. Although machine learning algorithms are rather goal-oriented than abstract
theoretical notions, they strongly rely on mathematics, mostly statistics, linear
algebra and logic. One of the most common distinctions between machine learning
algorithms differentiates two types of algorithms – supervised and unsupervised [1].

As far as unsupervised learning is concerned, its primary goal is to find the
relationships and similarities in the dataset. Elements of the given dataset are
described by some attributes. Basing on these attributes, the algorithm is supposed
to aggregate the elements of the dataset into clusters with similar properties. In
other words, the main task of unsupervised learning is splitting the dataset into
classes of similar objects however, these algorithms can also be useful to find
anomalies in the datasets. This task is called clustering, and it is often based on
such algorithms as k-mean [2–4], k-nearest neighbors [5,6], principal component
analysis [7, 8].

Let us now elaborate a bit on the supervised learning. We are given a dataset
with a few types of objects. Each object has some features and a label. The features
describe the object and are usually written as vectors of some quantities. If the
considered object was, e.g. a car, one could consider its features such as price,
year of production, engine type, number of seats etc. Basing on these features, an
experienced dealer can decide whether a car is worth buying or not. Therefore one
can assign a car with a label describing whether the given car is a good value for
money. Another classic example considers classifying customers who want to take
a loan. Every customer has such features as their age, level of income, loan history
etc. Basing on these features, the banker can decide whether a customer can get
the loan or not. Thus the customer is given a label indicating if they obtained a
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desired loan.

In supervised learning, we consider a set of objects, for instance, cars or bank
customers. Each object is described by a vector of attributes (features) and a
label stating to which class it belongs. This set is divided into the training and
validation sets. The algorithm first needs to learn the properties of the classes,
that is, to find the similarities among objects having the same labels. This is done
on the training set, and this process is known as training the algorithm. Then,
the validation set is taken into consideration. We give the algorithm some new
input from the validation set, this time without the label, and ask the algorithm to
predict the label basing on the knowledge gained during the training. To check the
correctness of the algorithm, we can compare the resulting predicted labels with
the known true labels. Basing on the number of correctly chosen labels, one is able
to assess the quality of the classification rule. The typical examples of supervised
learning algorithms include linear regression [9,10], logistic regression [11,12], Bayes
classification [13,14], decision trees [15, 16] and neural networks [17,18].

Now we provide a mathematical description of the basic classification problem.
Assume our task is the classification of m classes of objects. Let L = {l1, . . . , lm}
be a set of labels, where each label corresponds to a class. Let the dataset of
objects to be classified be denoted by S. The elements of this set are represented
as d-dimensional feature vectors. Therefore, i-th element of the dataset S takes
the form xi = [xi,1, . . . , xi,d]. Every such vector has a corresponding label which
indicates the class which this vector belongs. The goal of classification is to find a
map f : S → L, which associates each vector of attributes to a label. A typical
solution for the classification problem concerns finding the hyperplane which splits
the space into parts, where, in each of these parts, the elements have similar
properties. In the most basic, two-dimensional case, the goal is to find a separating
hyperplane which can distinguish between classes of different elements as well as
possible. In a more general case, we allow for having more than two classes and
improving the separating hyperplane using kernel methods.

In the typical formulation of the classification problem, when the model is
already trained, we give it a new element and ask for its label. This classification
problem can be seen also from a bit different perspective, and here we focus
on another interpretation of this task. We will be interested in the problem of
classification of m classes. Assume there are m devices, where i-th device produces
elements from i-th class. Therefore, we can think about these elements as the
outcomes of some device that produces elements having similar properties. Hence,
the problem of classification between elements belonging to different classes can be
translated to the problem of discrimination between various devices producing these
elements. Now we arrive at the objective of this dissertation – the discrimination
scheme. One of these devices is secretly chosen and put into a black box. We want

14



to find out which device is hidden in the black box, but we cannot just open it.
We can see only the elements this device produces, not the device itself. There
are many possible approaches towards this problem, including machine learning
algorithms. We can use a supervised learning algorithm and train it to get some
knowledge about the properties of the elements produced by each device. In the
final discrimination scheme, we can simply use the trained algorithm to classify
the given object and in this way decide which device was hidden in the black box.
Nevertheless, basing only on the outputs of a certain device, we will usually not
be able to state which device was hidden in the black box with certainty. It is
crucial to have a reasonable measure of distance between the devices. If the devices
produce elements according to some probability distributions, this, in fact, reduces
to studying the distance between those probability distributions. An example
of such a measure can be the well-established total variational distance between
probability distributions.

The situation gets even more interesting when the device hidden in the black
box not only produces elements, but rather transforms the given input into some
output object. The description of how the devices act is known. The only thing we
do not know is which of the devices is contained in the black box. In this case, to
discriminate the devices, it is reasonable to think about what inputs should be used
to get easily distinguishable outputs. In other words, we can use the knowledge
about the devices to optimize the input, thus increasing the chances of correct
discrimination.

Now we proceed to considering a quantum version of the discrimination problem.
There are a few versions of the discrimination problem, which are discrimination
of quantum states, channels and measurements. The simplest case that is the
discrimination of quantum states, can be seen as discrimination of devices which only
produce the quantum states. More precisely, we are given one of the devices, and
each device produces only one quantum state. Therefore, we need to measure the
resulting output state by a quantum measurement, and in this way, we obtain some
classical information about the state. The problem of discrimination of quantum
states is very well-researched [19–25]. An important property of discrimination of
quantum states is that we are not always able to distinguish them perfectly. In fact,
one can perfectly discriminate quantum states if and only if they are orthogonal.

Quantum channels can be seen as devices which transform one quantum state
into another. Therefore, when discriminating quantum channels, one should take
into consideration also the optimization of the input state. As the discrimination
of quantum channels will be of significant interest in this dissertation, let us take a
closer look at this scheme. There are two quantum channels, and we know their
classical descriptions. One of them is secretly chosen and put into the black box.
We can prepare any input state, so we look for a state that will result in as different
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outputs as possible depending on which channel was hidden in the black box. Then,
we apply the channel contained in the black box to the prepared input state, and,
as a result, we obtain an output state. This resulting output is also a quantum
state; hence we need to measure this state to get some classical information about
it. Basing on the result of the final measurement, we make a decision which of the
two channels was hidden in the black box.

As we are considering the discrimination of quantum objects, we can try to
take advantage of quantum entanglement. More precisely, we can prepare an
entangled input state on a larger space and apply the channel in the black box only
on one part of the state. Finally, we measure the resulting state by a quantum
measurement and basing on its classical output, we decide which of the channel
was hidden in the black box. In many cases, this procedure substantially improves
the discrimination [26–28].

Quantum measurements allow us to get classical information about quantum
states and are typically used at the end of the procedure of discrimination both
states and channels. Nevertheless, we can also consider the situation when the
black box contains one of a few quantum measurements, which classical descrip-
tions we do know. This problem, when the black box contains a secretly chosen
quantum measurement, is the focus of attention in this dissertation. In the most
basic discrimination scheme, we prepare some input state and measure it by the
measurement contained in the black box. As a result, we obtain a classical label and
we should make a decision which of the measurements was in the black box. This
basic approach reduces to discrimination of probability distributions and it does
not take any advantage of quantum entanglement. A more sophisticated version
of the discrimination scheme allows for preparing an entangled input state on a
compound register. Then, one part of this state is measured by the measurement
contained in the black box. Finally, we measure the other part of the state by any
prepared quantum measurement. Basing on the outcome of this final measurement,
we make a decision which of the measurements was secretly chosen.

How to assess how good the discrimination was? We may be interested in
verifying whether a specific object was given, and we want to be sure of that. We
may also be satisfied with the situation when we know it only up to some probability.
It may also happen that we want to avoid making a mistake in discrimination
so much that we agree on the possibility of obtaining an inconclusive answer.
There are three basic approaches towards discrimination that will be studied in
this dissertation, which are symmetric discrimination, unambiguous discrimination
and asymmetric discrimination. In the first symmetric approach, also known as
minimum error discrimination, our goal is to decide which of the given devices
was hidden in the black box, and we want to know it with as good probability as
possible. It also means that whenever we make a decision which of the two devices
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was chosen, we know it only up to some probability. The second approach assumes
that when we get a conclusive result (that is, when we decide which of the devices
was in the black box), we know it with certainty. It may happen, however, that
we are not able to make a conclusive decision. In other words, if we know which
device was hidden in the black box, we know it with probability one, but there is a
chance that we will get an inconclusive answer. The third approach is also known
as certification and it utilizes the statistical hypotheses testing. More precisely,
we assume that one of the devices was in the black box and try to verify this
hypothesis. In this approach, we differentiate two types of error, which are false
positive and false negative errors and study them separately. We will be interested
for example, when one type of error can be equal to zero and how small can be one
type of error assuming some bound on the other type.

After using the black box in the discrimination procedure only once, we may
not always be able to obtain satisfactory results of the discrimination. A natural
solution to this problem includes using the quantum channel or measurement
contained in the black box many times in various configurations. The most natural
extension of the single-shot scheme is the parallel discrimination scheme. One can
also try to make use of extra processing between queries to the black box. The
latter approach is known as the adaptive discrimination scheme. In this dissertation,
we will devote much attention to studying parallel and adaptive discrimination
strategies. Essentially, the thesis of this dissertation can be written as:

Adaptive strategies can improve discrimination of quantum measurements.

In the literature, it is also common to study the case when the number of
queries to the black box tends to infinity. The most popular approaches towards
asymptotic discrimination of quantum channels include Chernoff [29], Heoffding [30]
and Han-Kobayashi [31] settings. A broad introduction of all of these settings can
be found, eg. in the work [32]. However, in this dissertation, we will restrict our
attention to the situation when the black box can be used a finite number of times.

This dissertation is organized as follows. We begin with introducing basic notions
of quantum information theory and mathematical preliminaries in Chapter 2.

Symmetric discrimination in the single-shot case is studied in Chapter 3. It
is based on the works [33, 34] and focuses on the symmetric discrimination of
two classes of quantum measurements: projective von Neumann measurements
and symmetric informationally complete measurements, which are known as SIC
POVMs. Multiple-shot discrimination is studied in Chapter 4. In this chapter, we
will be interested in both parallel and adaptive discrimination strategies and we
will explore the problem of when the adaptive strategy can outperform the parallel
one. This chapter will be based on the work [35].

The following Chapter 5 concerns unambiguous discrimination. It is based on
the work [35]. We will calculate the probability of unambiguous discrimination of
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general measurements with rank-one effects. We will see how this probability can
be written for the cases of discrimination of von Neumann measurements and SIC
POVMs. We will generalize these results for the parallel case, and compare it with
the performance of the adaptive scheme.

Asymmetric discrimination scheme is studied in Chapter 6. It contains the
results from the works [36,37]. We will prove the conditions when it is possible to
exclude false negative error after a finite number of queries to the black box. We
will also see if the adaptive scheme improves asymmetric discrimination. Finally, we
will focus on the discrimination of von Neumann measurements and SIC POVMs
in both single-shot and parallel schemes.

Conclusions and final remarks can be found in Chapter 7. There are also two
appendices which contain proof of two theorems which require additional lemmas,
and thus they were too long and technical to be stated in the main text.
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Chapter 2

Preliminaries

2.1 Basic notions of quantum information
Let X be a complex Euclidean space. We will restrict our attention to finite-
dimensional spaces so we can assume that X = Cd. The dimension of the space
X will be denoted dim(X ). Throughout this dissertation we will use the Dirac
notation and write |φ〉 ∈ X for a column vector. Such a vector will be called a
ket. The dual vector corresponding to the ket |φ〉 will ce called a bra and denoted
〈φ| = |φ〉† := |φ〉>. The symbol (·)† denotes the Hermitian conjugate of a vector,
that is the transposition of the vector and complex conjugate of its elements.

For numerous applications it will be very convenient to distinguish a canonical
basis of the space X = Cd. This basis will be denoted {|1〉, . . . , |d〉}, there |i〉 is a
vector which i-th entry is equal to one and all other entries are equal zero.

Let φi denote the i-th entry of |φ〉. The inner product of vectors |φ〉, |ψ〉 ∈ X is
defined as

〈φ|ψ〉 :=
d∑
i=1

φiψi. (2.1)

This inner product 〈φ|ψ〉 directly satisfies the following properties

1. linearity in the second argument, that is 〈φ|αψ1 + βψ2〉 = α〈φ|ψ1〉+ β〈φ|ψ2〉
for every α, β ∈ C and |φ〉, |ψ1〉, |ψ2〉 ∈ X ;

2. conjugate symmetry, that is 〈φ|ψ〉 = 〈ψ|φ〉 for all |φ〉, |ψ〉 ∈ X ;

3. positive definiteness, that is 〈φ|φ〉 ≥ 0 for all |φ〉 ∈ X and 〈φ|φ〉 = 0 if and
only if |φ〉 = 0.

The norm of the vector |φ〉 is defined as ‖|φ〉‖ :=
√
〈φ|φ〉 ≥ 0. One can also

define the outer product of |ψ〉 and |φ〉 as |ψ〉〈φ| which corresponds to combining
ket and bra together, to obtain a linear operator.
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Operator-matrix correspondence A set of linear operators A : X → Y , where
Y is another complex Euclidean space, will be denoted by L(X ,Y). For the sake
of simplicity we will write L(X ) instead of L(X ,X ).

Every linear operator A ∈ L(X ,Y) can be associated with a matrix of size
dim(Y)×dim(X ) with coefficients defined as Ai,j := 〈i|A|j〉, where |i〉 ∈ Y , |j〉 ∈ X .
Thanks to this operator-matrix correspondence, in the rest of this dissertation the
notions of operators and matrices will be used interchangeably.

The symbol 1lX will be used to denote the identity matrix in the space L(X ),
that is a matrix which has ones on the diagonal and zeros everywhere else. We will
neglect the index when it will be clear from the context.

Entry-wise conjugate, transpose and adjoint We will use the notation A
to denote the entry-wise conjugate, that is a matrix such that Ai,j = Ai,j. The
transposition of a matrix A will be denoted by A>. In other words, A>i,j = Aj,i.
Finally, we will use the notation A† := A> for the adjoint of the matrix A.

Linear maps Let X and Y be complex Euclidean spaces. The set of linear maps
Φ : L(X )→ L(Y) will be denoted T (X ,Y). For the identity map we will use the
notation 1lL(X ) : L(X )→ L(X ) and we will neglect the index when the space will
be clear from the context.

Tensor product Let X = Cd1 and Y = Cd2 . The tensor products of vectors
|φ〉 ∈ X and |ψ〉 ∈ Y is defined as

|φ〉 ⊗ |ψ〉 :=

 φ1|ψ〉
...

φd1|ψ〉

 . (2.2)

We will often write |φ〉|ψ〉, or even |φψ〉, instead of |φ〉 ⊗ |ψ〉 to keep the notation
short and concise.

The tensor product of spaces X and Y is denoted by X ⊗ Y , and defined as

X ⊗ Y := span {|φ〉 ⊗ |ψ〉 : |φ〉 ∈ X , |ψ〉 ∈ Y} . (2.3)

Such a product space will be also called a compound space. The spaces X and Y
will be called the corresponding registers of this space. When talking about tensor
products of many spaces we will use the notation X⊗N instead of writing N -time
tensor product X ⊗ . . .⊗X .

So far we introduced the tensor product of vectors and complex Euclidean
spaces. Now we proceed to introducing tensor product of operators and linear
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maps. Let X ∈ L(X ,Y) and Y ∈ Z(Z,W). The X ⊗ Y ∈ L(X ⊗ Z,Y ⊗W) is
defined as a unique operator satisfying

(X ⊗ Y ) |φ〉|ψ〉 = X|φ〉 ⊗ Y |ψ〉 (2.4)

for every |φ〉 ∈ X , |ψ〉 ∈ Z.
Let Φ ∈ T (X ,Y) and Ψ ∈ T (Z,W). The Φ⊗Ψ ∈ T (X ⊗Z,Y ⊗W) is defined

as a unique map satisfying

(Φ⊗Ψ) (X ⊗ Y ) = Φ(X)⊗Ψ(Y ) (2.5)

for every X ∈ L(X ), Y ∈ L(Z).

Rank of an operator Let A ∈ L(X ,Y). The subspace of Y, called the image
of A, is defined as

im(A) := {A|x〉 : |x〉 ∈ X}. (2.6)

The rank of the operator A is equal to the dimension of im(A), that is

rank(A) = dim(im(A)). (2.7)

Eigenvalues and eigenvectors Let A ∈ L(X ). A complex number λ, such that
A|u〉 = λ|u〉 for some vector |u〉 ∈ X , is called an eigenvalue of the matrix A and
the vector |u〉 is called an eigenvector of the matrix A. The multiset of eigenvalues
of A is known as its spectrum and denoted spec(A).

Singular values and vectors While eigenvalues and eigenvectors are defined
only for square matrices, in many cases it is useful to take advantage of their
generalizations into singular values and vectors, which are defined for arbitrary
matrices. Let A ∈ L(X ,Y) have rank equal k. Then, from the Singular Value
Theorem [38], one can write the matrix A as

A =
k∑
i=1

si|yi〉〈xi|, (2.8)

where {|x1〉, . . . , |xk〉} ⊂ X and {|y1〉, . . . , |yk〉} ⊂ Y are sets of orthonormal vectors
and s1, . . . , sk are positive numbers.

The numbers s1, . . . , sk are called singular values of the matrix A. The vectors
{|x1〉, . . . , |xk〉} are called right singular vectors and vectors {|y1〉, . . . , |yk〉} are
called left singular vectors of the matrix A.
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Trace and partial trace A trace of a matrix A ∈ L(X ) is defined as a unique
mapping Tr : L(X )→ C satisfying

Tr(|φ〉〈ψ|) = 〈ψ|φ〉 (2.9)

for every |φ〉, |ψ〉 ∈ X . It can be calculated as a sum if its diagonal elements, that
is Tr(A) :=

∑
iAi,i.

The cyclic property of the trace, which will be crucial in numerous proofs, can
be formulated as Tr(AB) = Tr(BA) for every A ∈ L(X ,Y) and B ∈ L(Y ,X ).
Another important property of the trace states that it is in fact a sum of the
eigenvalues of the matrix.

The linear map TrX : L(X ⊗ Y)→ L(Y) is called a partial trace and is defined
as a unique map satisfying

TrX (X ⊗ Y ) =
(
Tr⊗ 1lL(Y)

)
(X ⊗ Y ) = Tr(X)Y (2.10)

for everyX ∈ L(X ) and Y ∈ L(Y). Similarly, a linear map TrY : L(X⊗Y)→ L(X )
is defined as a unique map satisfying

TrY (X ⊗ Y ) =
(
1lL(X ) ⊗ Tr

)
(X ⊗ Y ) = Tr(Y )X (2.11)

for every X ∈ L(X ) and Y ∈ L(Y).

Vectorization Given complex Euclidean spaces X and Y, the (lexicographic)
vectorization is a linear map vec : L(Y ,X )→ X ⊗Y defined by the action on the
elements of the canonical bases

vec (|i〉〈j|) = |i〉 ⊗ |j〉, (2.12)

where |i〉 ∈ X , |j〉 ∈ Y .
From the linearity, the action of vectorization can be generalized for any for

|u〉 ∈ X , |v〉 ∈ Y as
vec (|u〉〈v|) = |u〉 ⊗ |v〉. (2.13)

In the rest of this dissertation the vectorization of the matrix A will be denoted
by |A〉〉 := vec(A). Moreover, 〈〈A| := (|A〉〉)†.

Two properties of vectorization, which hold for all A,B ∈ L(Y ,X ) will be of
great advantage in various proofs, which are [38]

TrX (|A〉〉〈〈B|) = A>B, TrY (|A〉〉〈〈B|) = AB†. (2.14)

Let now A ∈ L(X ,Y), B ∈ L(Z,W) and X ∈ L(Z,X ). The important
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property of the vectorization, known as telegraphic notation [38], is given by

(A⊗B) |X〉〉 = |AXB>〉〉. (2.15)

We will often also use the operation which is a reverse of vectorization. This
operation is a linear map vec† : X ⊗ Y → L(Y ,X ) defined by the action on the
elements of the canonical bases

vec† (|i〉 ⊗ |j〉) = |i〉〈j|, (2.16)

where |i〉 ∈ X , |j〉 ∈ Y. We will often use the simplified notation [ψ] to denote
vec†(|ψ〉), where |ψ〉 ∈ X ⊗ Y .

Classes of operators which will be studied in this dissertation

• An operator A ∈ L(X ) is called normal if AA† = A†A.

• An operator A ∈ L(X ) is called Hermitian if A = A†. The set of Hermitian
operators will be denoted by Herm(X ). The eigenvalues of Hermitian matrix
are real numbers.

• An operator A ∈ L(X ) is called positive semidefinite, and denoted A ≥ 0,
when 〈ψ|A|ψ〉 ≥ 0 for every |ψ〉 ∈ X . Alternatively, the set of positive
semidefinite operators, denoted Pos(X ), can be defined as the subset of all
Hermitian operators which all eigenvalues are non-negative.

• Similarly, A ∈ L(X ) is called positive definite when 〈ψ|A|ψ〉 > 0 for every
|ψ〉 ∈ X . The set of positive definite operators will be denoted Pd(X ) and we
will write A > 0 when a matrix A is positive definite. Alternatively, we can
say that a matrix is positive definite if it is Hermitian and all its eigenvalues
are positive.

• An operator A ∈ Pos(X ) is called a projection operator if A2 = A. The set
of projection operators will be denoted Proj(X ). Alternatively, a projection
operator can be defined as a Hermitian operator having only eigenvalues
equal either zero or one.

• A matrix X ∈ L(X ,Y) is called an isometry if dim(X ) ≤ dim(Y) and
XX† = 1lX . The set of isometry operators will be denoted U(X ,Y). An
isometry is a rectangular matrix when dim(X ) 6= dim(Y). A square isometry
is called a unitary operator and the set of unitary operations will be denoted
U(X ). An alternative definition for unitary operators says that U ∈ U(X ) if
UU † = U †U = 1lX .
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The notation of matrix inequalities A ≥ B (A > B) should be understood as
A−B ≥ 0 (A−B > 0).

Spectral decomposition and functions of normal matrices Let A ∈ L(X )
be a normal operator of dimension d having eigenvalues λ1, . . . , λd. From the
Spectral Theorem [38] we can write A as

A =
d∑
i=1

λi|xi〉〈xi|, (2.17)

where {|x1〉, . . . , |xd〉} is an orthonormal basis of X and elements of this basis are
called eigenvectors.

In this dissertation we will be only interested in functions acting on the sets
of normal operators. Using the notation as above, a function f : L(X )→ L(X ) is
defined as

f(A) =
d∑
i=1

f(λi)|xi〉〈xi|. (2.18)

Jordan-Hahn decomposition Let H ∈ Herm(X ). From Spectral Theorem
and the property of Hermitian operator we know that H can be written as H =∑d

i=1 λi|xi〉〈xi|, where all λ1, . . . , λd are real numbers. To formulate the Jordan-
Hahn decomposition of H, we define operators

P :=
d∑
i=1

max{λi, 0}|xi〉〈xi|,

Q :=
d∑
i=1

max{−λi, 0}|xi〉〈xi|,

(2.19)

which are called the non-negative and non-positive parts, respectively. The expres-
sion

H = P −Q, (2.20)

where P,Q ∈ Pos(X ) and PQ = 0, is known as Jordan-Hahn decomposition of the
Hermitian operator H [38]. The above requirements for P and Q assure that there
is only one possible such decomposition, hence the Jordan-Hahn decomposition is
unique.

Norms of operators Throughout this dissertation we will often use Schatten
p-norm. Let A ∈ L(X ,Y). For any number p ≥ 1 one defines the Schatten p-norm
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of A as
‖A‖p :=

(
Tr
((
A†A

) p
2

)) 1
p (2.21)

and
‖A‖∞ := lim

p→∞
‖A‖p = max {‖A|u〉‖ : |u〉 ∈ X , ‖|u〉‖ ≤ 1} . (2.22)

The Schatten 1-norm is also known as the trace norm. It can be calculated directly
as

‖A‖1 := Tr
(√

A†A
)
. (2.23)

The trace norm coincides with the sum of singular values of the matrix X. The
dual definition of the trace norm yields [38]

‖A‖1 = max
V ∈U(X )

|trAV |. (2.24)

The Schatten 2-norm is commonly called the Frobenius norm. It is analogous
to Euclidean norm for vectors and it can be calculated as

‖A‖2 :=
√

Tr (A†A) = ‖|A〉〉‖ . (2.25)

The Schatten ∞-norm is the norm induced by the Euclidean norm and is equal
to the largest singular value of the matrix. It is known in the literature as the
spectral norm and we will often be writing ‖A‖ instead of ‖A‖∞ to denote the
spectral norm of A.

Finally, let us quote a useful lemma from [38] which gives direct formulas for
the eigenvalues and trace norm of rank-two matrices and can be obtained by direct
calculations.

Lemma 1 The operator α|u〉〈u| − β|v〉〈v|, where ‖|u〉‖ = ‖|v〉‖ = 1 and α, β ∈ R,
is Hermitian and has at most two nonzero eigenvalues given by the expression

λ± =
α− β

2
± 1

2

√
(α + β)2 − 4αβ|〈u|v〉|2. (2.26)

Moreover
‖α|u〉〈u| − β|v〉〈v|‖1 =

√
(α + β)2 − 4αβ|〈u|v〉|2. (2.27)

2.1.1 Quantum states

Finally, we are in position to introduce the definition of the set of quantum states. A
quantum state represents a generalized probability distribution. In this subsection
we will begin with the formal definition of quantum states and later, we will state
some of their properties and decompositions.
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Definition 1 A quantum state ρ ∈ L(X ) is a positive-semidefinite operator satis-
fying Tr(ρ) = 1. The set of quantum states will be denoted by D(X ).

The set D(X ) is also known an the set of density operators and it coincides
with the definition of quantum states.

A significant class of quantum states are pure states. Formally, a quantum state
ρ ∈ D(X ) is called a pure state when rank(ρ) = 1. From the Spectral Theorem [38]
it follows that that the pure states are the extreme points of the convex set D(X ).
Every pure state can be written as a projector on 1-dimensional subspace, that
is |ψ〉〈ψ|, where ‖|ψ〉‖ = 1, and every projector expressed in this way is a pure
quantum state. While talking about pure quantum states we will often be writing
only |ψ〉 instead of |ψ〉〈ψ|. A quantum state which is not pure, will be called a
mixed state.

Entanglement A quantum state ρ ∈ D(X ⊗Y) is called separable, if there exist
collections of states {σ1, . . . , σm} ⊆ D(X ), {φ1, . . . , φm} ⊆ D(Y) and a probability
vector (p1, . . . , pm) such that

ρ =
m∑
i=1

piσi ⊗ φi. (2.28)

A quantum state, which is not separable, is called an entangled state.
Entanglement is a key resource in quantum information theory, which will be of

great importance in the discrimination problems studied in this dissertation [26,39].
The criteria for verifying if a quantum states are entangled were first proved in [40],
and numerous results regarding for instance multipartite entanglement [41–43],
geometry of entangled states [44, 45] and entanglement measures [46–50] were
reported. The broad review of the results concerning quantum entanglement can
be fund in [51].

Now we introduce two decompositions of quantum states, which are the Spectral
Decomposition of mixed states and the Schmidt Decomposition of pure states on a
compound space.

Spectral Decomposition Let ρ ∈ D(X ) and d = dim(X ). The quantum state
ρ can be decomposed into a sum as in Eq. (2.17), where {|x1〉, . . . , |xd〉} is an
orthonormal basis of X and (λ1, . . . , λd) is a probability vector. The scalars λi are
eigenvalues of the state ρ and vectors |xi〉 are the corresponding eigenvectors.
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Schmidt Decomposition Every pure quantum state |ψ〉 ∈ X ⊗ Y, on a com-
pound space X ⊗ Y , can be expressed as

|ψ〉 =
r∑
i=1

√
λi|xi〉 ⊗ |yi〉, (2.29)

where {|xi〉}i is an orthonormal basis of the space X , {|yi〉}i is an orthonormal
basis of the space Y and λ1, . . . , λr are positive real numbers. This decomposition
is called the Schmidt Decomposition and it follows directly from the Singular Value
Decomposition in Eq. (2.8) and the property of vectorization in Eq. (2.13). The
number r is known as the Schmidt rank.

2.1.2 Quantum channels and linear maps

We say that a linear map Φ ∈ T (X ,Y) is positive when for every X ≥ 0 it holds
that Φ(X) ≥ 0. We say that a linear map is completely positive, when for every
X ∈ Pos(X ⊗ Z) and for every space Z it holds that (Φ ⊗ 1lL(Z))(X) ≥ 0. We
say that a linear map Φ ∈ T (X ,Y) is trace-preserving, when Tr(Φ(X)) = Tr(X)
for every X ∈ L(X ) and it is Hermiticity-preserving if for every X ∈ Herm(X ) it
holds that Φ(X) ∈ Herm(Y).

Definition 2 A quantum channel is a linear map Φ ∈ T (X ,Y), which is com-
pletely positive and trace-preserving. The set of such quantum channels will be
denoted by C(X ,Y).

Important classes of quantum channels We will focus on two classes of
quantum channel, which are isometry channels and dephasing channel.

• Let U ∈ U(X ,Y) be an isometry operator. The isometry channel ΦU ∈
C(X ,Y) is defined as

ΦU(ρ) = UρU †. (2.30)

When U ∈ U(X ) is a unitary matrix, then the channel ΦU is called a unitary
channel.

• The completely dephasing channel ∆ ∈ C(X ), where dim(X ) = d, is defined
as

∆(ρ) =
d∑
i=1

〈i|ρ|i〉|i〉〈i|. (2.31)

The set of linear maps T (X ,Y) has several representations. We will focus on
the Kraus, Choi-Jamiołkowski and Stinespring representations.
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Kraus representation Every linear map Φ ∈ T (X ,Y) can be represented as

Φ(ρ) =
k∑
i=1

EiρF
†
i , (2.32)

where operators {Ei}ki=1, {Fi}ki=1 ⊆ L(X ,Y) are called Kraus operators of the given
map Φ [52–54].

In the case when Φ ∈ C(X ,Y) is a quantum channel, then it holds that Ei = Fi
for every i = 1, . . . , k and

∑k
i=1E

†
iEi = 1lX . The former condition corresponds to

complete positivity of the quantum channel while the latter assures that the channel
is trace-preserving. Therefore, with notation as above, the Kraus representation of
the quantum channels Φ can be written as

Φ(ρ) =
k∑
i=1

EiρE
†
i . (2.33)

Let us see the Kraus representation of exemplary quantum channels. Unitary
channel ΦU has the Kraus representation which consists of only one operator, that
is {Ei}i = {U}. The completely dephasing channel ∆ has Kraus representation
{|i〉〈i|}di=1

An important feature of Kraus operators yields that they are not unique. More
precisely, consider two collections of operators {Ei}ki=1 and {Fi}ki=1 which for every
ρ satisfy

k∑
i=1

EiρE
†
i =

k∑
i=1

FiρF
†
i . (2.34)

Then there exists a unitary operator U ∈ U(X ) such that

Fi =
k∑
j=1

〈i|U |j〉Aj (2.35)

holds for every i = 1, . . . , k.

Choi-Jamiołkowski representation The Choi-Jamiołkowski representation [53,
55] of Φ ∈ T (X ,Y) is defined as a mapping J : T (X ,Y)→ L(Y ⊗ X ) as

J(Φ) =
∑
i,j

Φ(|i〉〈j|)⊗ |i〉〈j| =
(
Φ⊗ 1lL(X )

)
(|1lX 〉〉〈〈1lX |) . (2.36)
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The rank of the Choi-Jamiołkowski operator J(Φ) is called the Choi rank of Φ.
The action of the linear map Φ on a state ρ can be recovered as

Φ(ρ) = TrX
(
J(Φ)

(
1lY ⊗ ρ>

))
. (2.37)

This representation is particularly important as is resembles significant algebraic
properties. The map Φ is Hermiticity-preserving if and only if J(Φ) ∈ Herm(Y⊗X ).
Moreover, Φ is completely positive if and only if J(Φ) ∈ Pos(Y ⊗ X ). Finally, Φ is
trace-preserving if and only if TrY (J(Φ)) = 1lX .

The Choi-Jamiołkowski representation of a unitary channel ΦU has the form
J (ΦU) = |U〉〉〈〈U |.

Stinespring representation Let X ,Y ,Z be complex Euclidean spaces. For
Φ ∈ T (X ,Y), its Stinespring representation is defined for every ρ ∈ D(X ) as

Φ(ρ) = TrZ
(
AρB†

)
, (2.38)

where A,B ∈ L(X ,Y ⊗ Z) [56]. Stinespring representation of a quantum map is
not unique. In the case when Φ ∈ C(X ,Y), its Stinespring representation can be
written as

Φ(ρ) = TrZ
(
V ρV †

)
(2.39)

for some isometry matrix V ∈ U(X ,Y ⊗ Z).
Moreover, the Stinespring representation of Φ ∈ C(X ) can be written by the

use of unitary operator as

Φ(ρ) = TrZ
(
U (ρ⊗ |0〉〈0|)U †

)
, (2.40)

where U ∈ U(X ⊗ Z). This representation has a useful operational interpretation.
We consider the action of a unitary channel on a given system with an attached
additional state |0〉〈0|. Then, we perform the partial trace on the additional register
and obtain the action of the original channel.

2.1.3 Quantum measurements

The most general quantum measurements are positive operator valued measures
(POVMs). In this dissertation we will consider only the POVMs having a finite
number of effects. Formally, a collection of is positive semidefinite operators
P = {E1, . . . , Em} ⊂ Pos(X ) is called a POVM if

∑m
i=1Ei = 1lX . The operators

Ei are called effects. When a quantum state ρ is measured by the measurement
P , then the label i is obtained with probability Tr (ρEi) and the state ρ ceases to
exist (Born rule).
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Every quantum measurement P = {E1, . . . , Em} can be identified with a
measure-and-prepare channel which gives a classical output. In other words, the
output of this channel is a diagonal state where the probability distribution on the
diagonal gives the probabilities of obtaining the measurement labels. The action of
this channel on a quantum state ρ can be written as

P(ρ) =
m∑
i=1

Tr(Eiρ)|i〉〈i|. (2.41)

The Choi-Jamiołkowski representation of the quantum measurement P has a
block-diagonal structure

J(P) =
m∑
i=1

|i〉〈i| ⊗ E>i , (2.42)

which can be seen from direct calculation

J(P) =
n∑

k,l=1

P(|k〉〈l|)⊗ |k〉〈l| =
n∑

k,l=1

n∑
i=1

Tr (|k〉〈l|Ei) |i〉〈i| ⊗ |k〉〈l|

=
n∑
i=1

n∑
k,l=1

|i〉〈i| ⊗ 〈k|E>i |l〉|k〉〈l| =
n∑
i=1

|i〉〈i| ⊗ E>i .
(2.43)

When the effects of the measurement are projection operators, then such a
measurement is called the projective measurement. Throughout this dissertation,
we will focus mostly on two classes of quantum measurements, which are projective
von Neumann measurements and SIC POVMs, which are described below.

Von Neumann measurement

Let {|u1〉, . . . , |ud〉} be an orthonormal basis of the space X . A quantum measure-
ment with effects {|u1〉〈u1|, . . . , |ud〉〈ud|} is called a von Neumann measurement.
Noting that |ui〉 = U |i〉 is the i-th column of some unitary matrix U ∈ U(X ), we
can parameterize the von Neumann measurement by this unitary matrix. Therefore,
we will simply write PU to denote the von Neumann measurement with effects
{|u1〉〈u1|, . . . , |ud〉〈ud|}.

In this definition of von Neumann measurement PU , every unitary matrix taken
from the set {UE : E ∈ DU(X )}, where DU denotes the set of diagonal unitary
matrices, specifies the same measurement. It can be easily seen that a projection
U |i〉〈i|U † built from unitary some matrix U will be the same as the projection built
from the unitary matrix UE for some E ∈ DU(X ). Hence, we an say that matrices
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UE form an equivalence class of the unitary matrix U . In other words PU = PUE
for every E ∈ DU(X ).

We will often take advantage of the von Neumann measurement in the canonical
basis, that is the measurement associated with the identity matrix 1l. Therefore the
effects of this measurements are matrices of the form {|1〉〈1|, . . . , |d〉〈d|}. Note that
such a measurement corresponds to the completely dephasing channel ∆, which
was introduced in Eq. (2.31).

SIC POVMs

Another important class of quantum measurements are symmetric informationally
complete (SIC) POVMs [57–61]. A SIC POVM of dimension d has d2 effects
{|x1〉〈x1|, . . . , |xd2〉〈xd2|}, where |xi〉〈xi| = 1

d
|φi〉〈φi| and ‖|φi〉‖ = 1 for every i =

1, . . . , d2. Moreover, the symmetry condition states that

|〈φi|φj〉|2 =
1

d+ 1
, (2.44)

for i 6= j.

It is not known whether SIC POVMs exist for every dimension and it is also an
open question whether it is possible to construct an infinite family of them [62–65].
Moreover, analytical construction of SIC POVMs is very complex and for many
dimensions only numerical results prove the existence of them.

In further sections, we will study discrimination between two SIC POVMs of
the same dimension. The effects of the second measurement will be a permutation
of effects of the first measurement. Therefore, let us formally introduce the notion
of permutations and notation.

A permutation π of a set S := {1, . . . ,m} is a bijection function from S to itself.
Loosely speaking, it corresponds to rearrangement of elements. We will use the
notation π = (a1, a2 . . . , am) instead of writing

π(1) = a1, π(2) = a2, . . . , π(m) = am. (2.45)

A useful property of a permutation in the number of fixed points. A fixed point of
the permutation π is the number a ∈ S for which π(a) = a. The number of fixed
points of the permutation is the cardinality of the set of its fixed points, and will
be denoted by k := #{a : π(a) = a}.
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2.2 Distance between quantum objects

While studying the problem of discrimination of quantum objects, we will often
need to be able to measure the distance between quantum objects. In this section
we will introduce notions of distance between probability distributions, quantum
states, channels and measurements.

2.2.1 Distance between probability distributions

Let p and q be two probability distributions on d dimensional space X . The total
variation distance between p and q is defined as

‖p− q‖1 :=
∑
i

|pi − qi| = 2 max
∆⊆{1,...,d}

∑
a∈∆

(pa − qa) . (2.46)

This notion of distance has an operational interpretation which states that it is the
greatest possible difference between the probabilities that distributions p and q can
assign to the same event. It also relates to the an error when using the maximum
likelihood method. Due to this interpretation, the total variation distance between
probability distributions is commonly used in machine learning and statistics.

2.2.2 Distance between quantum states

Trace distance Given two quantum states ρ, σ ∈ D(X ), the trace distance
between ρ and σ is defined as

dist(ρ, σ) := ‖ρ− σ‖1. (2.47)

Note that when quantum states ρ and σ are diagonal, then calculating the trace
distance between them reduces to calculating the total variation distance between
probability distributions on their diagonals.

The trace norm is typically used to describe the distance between quantum
states due to its operational interpretation. It is a natural generalization of the
distance between probability distributions to the distance between quantum states.
It it also used in the Holevo-Helstrom Theorem [66], which gives an upper bound
on the probability of successful discrimination between quantum states.

Theorem 1 (Holevo-Helstrom) Let X be a complex Euclidean space and ρ, σ ∈
D(X ). For every measurement P = {E0, E1} and for every λ ∈ [0, 1] it holds that

λtr (E0ρ) + (1− λ)tr (E1σ) ≤ 1

2
+

1

2
‖λρ− (1− λ)σ‖1. (2.48)
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Moreover, there exists a projective measurement P for which the inequality is
saturated.

Now we will state the form of the projective measurement which saturates the
bound in the above theorem. Let X := λρ− (1− λ)σ and let X = P −Q be its
Jordan-Hahn decomposition for P,Q ∈ Pos(X ). The projective measurement is
defined as

E0 := Proj(im(P )), E1 := 1l− Proj(im(P )). (2.49)

Let us elaborate a bit on the operational interpretation of the Holevo-Helstrom
theorem. We are given one of the two quantum states, either ρ or σ. Our task
is to decide which of the states we were given. We know that the state ρ was
given with probability λ and the state σ was given with probability 1 − λ. To
perform the discrimination, we prepare the measurement P and measure the given
state. The measurement P has two effects: E0 and E1. If the outcome of this
measurement corresponds to the effect E0, then we decide that the given state was
ρ. Analogously, when the outcome of this measurement corresponds to the effect
E1, then we decide that the given state was σ.

The expression on the left hand side of Eq. (2.48) is the probability of successful
discrimination between the states. First, we multiply the probability λ of being given
the state ρ by the probability of obtaining the measurement label corresponding to
the effect E0. This part corresponds to making a correct discrimination decision
when we were given the state ρ. Then, we multiply the probability of being given
the state σ times the probability of obtaining the measurement label corresponding
to the effect E1. Finally, we sum the probabilities of correctly discriminating both
ρ and σ. The Holevo-Helstrom theorem gives the upper bound on this probability
expressed using the trace distance between quantum states. As this probability
can be saturated by the use of measurement from Eq. (2.49), this theorem also
provides the optimal strategy for discrimination of quantum states.

2.2.3 Distance between quantum channels

The most natural notion of distance between quantum channels is the diamond
norm distance. For a linear map Φ ∈ T (X ,Y), its diamond norm is defined as

‖Φ‖� = max
‖X‖1≤1

∥∥(Φ⊗ 1lL(X )

)
(X)

∥∥
1
. (2.50)

When dealing with the diamond norm of a Hermiticity-preserving map, it may be
beneficial to make use of the alternative formula for the diamond norm [38,67]

‖Φ‖� = max{‖(1l⊗√ρ)J(Φ)(1l⊗√ρ)‖1 : ρ ∈ D(X )}. (2.51)
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For the Hermiticity-preserving maps, there are known bounds on the diamond
norm [33,38,68]

1

d
‖J(Φ)‖1 ≤ ‖Φ‖� ≤ ‖TrY |J(Φ)|‖. (2.52)

The diamond norm distance between quantum channels Φ0 and Φ1 is defined as
‖Φ0 − Φ1‖�. The operational interpretation is as follows. We want to discriminate
outputs of the channels using the Holevo-Helstrom theorem 1. We can optimize
over the input states which can be entangled with an additional register. This
operational interpretation for discrimination of quantum channels will be further
discussed in Section 3.2.

2.3 Numerical range and support

2.3.1 Numerical range

In the studies on the symmetric discrimination of quantum measurements the key
tool in the proofs will be the notion of numerical range. For a matrix X ∈ L(X ),
its numerical range is a subset of complex plane defined as

W (X) := {〈ψ|X|ψ〉 : |ψ〉 ∈ X , 〈ψ|ψ〉 = 1} . (2.53)

The essential property of the numerical range is known as the Hausdorf-Toeplitz
theorem [69,70], which states that W (X) is a convex set. Hence it can be rewritten
as

W (X) = {Tr(Xρ) : ρ ∈ D(X )}. (2.54)

There are many generalizations of numerical range known in the literature [71–
77] and one of them, which will be used a lot in this dissertation, is the q-numerical
range [78–80]. The q-numerical range of the matrix X is defined as

Wq(X) := {〈ϕ|X|ψ〉 : ‖|ϕ〉‖ = ‖|ψ〉‖ = 1, 〈φ|ψ〉 = q, q ∈ C} . (2.55)

Note that for q = 1 we recover the numerical range, that is W1(X) = W (X).
Moreover, we will use the notation

νq(X) := min {|x| : x ∈ Wq(X)} , (2.56)

to denote the distance on the complex plane from the origin of the coordinate
system to the q-numerical range. For simplicity, we will write ν(X) instead of
ν1(X).

The set Wq(X) is compact and convex [78]. An important property of q-
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numerical range is [81]

Wq′ ⊆
q′

q
Wq for q ≤ q′, q, q′ ∈ R. (2.57)

Moreover, for every q ∈ R it holds that [81]

Wq (X ⊗ 1l) = Wq(X) (2.58)

and therefore also
νq (X ⊗ 1l) = νq(X). (2.59)

The detailed shape of q-numerical range is described in [79].

2.3.2 Supports

The notions of supports of quantum states and channels will be useful in numerous
cases in this dissertation. Let ρ ∈ D(X ) be a quantum state with spectral decom-
position ρ =

∑d
i=1 pi|xi〉〈xi|. Then, the support of ρ is a subspace of X defined

as
supp(ρ) := span{|xi〉 : pi > 0}. (2.60)

Let Φ ∈ C(X ,Y) be a quantum channel having Kraus operators {E1, . . . , Ek} ⊆
L(X ,Y). The support of the channel Φ is a subspace of L(X ,Y) which was defined
in [82] as

supp(Φ) := span{E1, . . . , Ek}. (2.61)
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Chapter 3

Symmetric discrimination

In the symmetric discrimination scheme, we are given a black box which contains
one of two quantum objects. Our goal will be to decide which of the objects was
inside the black box and maximize the probability that this decision is correct.
Discrimination of quantum channels and measurements is more complex than
discrimination of quantum states. Quantum channels transform quantum states
into quantum states. Quantum measurements take as input a quantum state and
output a classical label. In both cases, we need to prepare some input state to get
the output and gain knowledge about the content of the black box.

In this chapter, we will focus on the case when the black box can be used exactly
once, and this will be called single-shot discrimination. We will be interested
mostly in the discrimination of quantum measurements, so assume that the black
box contains either the measurement P0 or the measurement P1. The classical
descriptions of both measurements are known, so we can use this knowledge to
prepare the discrimination strategy.

Before describing the strategy for the discrimination of quantum measurements
and channels, let us quickly review the discrimination of quantum states [19–25].
Assume there are two quantum states and we know their classical descriptions.
One of these states is secretly chosen with equal a priori probabilities and hidden
inside the black box. To perform the discrimination, we can only measure the
state in the black box. Such a measurement will be called a final measurement
and denoted PF . The form of final measurement in the symmetric discrimination
scheme is given by the Holevo-Helstrom Theorem 1.

In the most naïve approach to discrimination of quantum measurements, we
can prepare some input state and measure it with the measurement contained in
the black box. This scheme reduces to the problem of discrimination of probability
distributions. However, not every input state will be equally good. The fundamental
difficulty in such a naïve approach is finding the optimal input state to maximize
the probability of correct discrimination. This scheme of discrimination will be
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studied in Section 3.1, which will be based on [33].
A more sophisticated scheme for discrimination of quantum measurements

allows for the use of entanglement [26, 83–88]. In this scheme, the measurement
contained in the black box will act only on a part of an entangled input state.
In other words, we can prepare as the input some entangled quantum state and
perform the measurement contained in the black box on one part of this state.
After this measurement, we obtain a classical label, and later, we can measure
the remaining part of the entangled state by the final measurement PF . This is
the most general scheme of discrimination of quantum measurements when the
measurement in the black box can be used only once. It will be described in greater
detail in Section 3.2.

Later, in Section 3.3, we will focus on the discrimination of von Neumann mea-
surements. We will prove a condition when such measurements can be discriminated
perfectly (with probability one). In the case when perfect discrimination will not be
achievable, we will provide the optimal probability of their correct discrimination.
This section will be based on the work [33]. The following section 3.4 will focus on
the discrimination of SIC POVMs. We will calculate the probability of their correct
discrimination and study when the use of entanglement improves the discrimination.
This section contains results that have not been published.

3.1 Naïve discrimination
When a quantum state is measured, it ceases to exist. The only information given
by the measurement is a classical label. Assume that in the black box there is one
of two measurements which classical descriptions we know - either P0 or P1. In
the most naïve scheme, to discriminate these measurements we only prepare an
input state |ψ〉 and apply the measurement contained in the black box on the input
state. As a result, we obtain a classical label, i, basing on which we perform some
post-processing to decide whether the measurement was P0 or P1. This scheme
of discrimination is depicted in Figure 3.1. The post-processing is denoted as a
trivial final measurement PF . It allows us to decide, based on the label i, whether
the final answer is 0, if the measurement was P0, or the final decision is 1, if the
measurement in the back box was P1.

|ψ〉 P0/P1 i PF 0 / 1

Figure 3.1: Scheme of naïve discrimination of quantum measurements P0 and P1.

Every quantum measurement can be seen as a quantum channel which outputs
a probability distribution. More precisely, this quantum channel transforms the
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input state into the diagonal matrix, where the elements on the diagonal correspond
to probabilities of obtaining respective measurement labels. So does this problem
of discrimination of quantum measurements directly reduce to discrimination of
probability distributions? Although we can use the tools for discrimination of
probability distributions, the essential part of the problem is choosing the optimal
input state.

Finding the best input state is not trivial. Nevertheless, we still can calculate
the probability of discrimination between von Neumann measurements without
stating directly the form of the input state. This is formulated as the following
Proposition, which was proved in [33].

Proposition 1 Let P0,P1 be quantum measurements with effects {Ei}mi=1 and
{Fi}mi=1 respectively. The probability p of their correct discrimination, without the
usage of entangled states, is upper-bounded by

p ≤ 1

2
+

1

2
max

∆⊆{1,...,m}

∥∥∥∥∥∑
i∈∆

(Ei − Fi)

∥∥∥∥∥ . (3.1)

Proof. We will take advantage of the Holevo-Helstrom bound for the discrimination
of quantum states (see Eq. (2.48)), which yields that the probability of correct
discrimination between quantum states ρ0 and ρ1 is upper-bounded by p ≤ 1

2
+

1
4
‖ρ0 − ρ1‖1. In the scheme of discrimination of quantum measurements we can

optimize over input states, and therefore we have the bound

p ≤ 1

2
+

1

4
max
ρ
‖P0(ρ)− P1(ρ)‖1. (3.2)

To complete the proof we calculate

max
ρ
‖P0(ρ)− P1(ρ)‖1 = max

ρ
‖diag [(P0 − P1)(ρ)] ‖1

= max
ρ

∑
i

|Tr (ρ(Ei − Fi))|

= max
|ψ〉

∑
i

|〈ψ| (Ei − Fi) |ψ〉|

= 2 max
∆⊆{1,...,m}

max
|ψ〉
〈ψ|

(∑
i∈∆

(Ei − Fi)

)
|ψ〉

= 2 max
∆⊆{1,...,m}

∥∥∥∥∥∑
i∈∆

(Ei − Fi)

∥∥∥∥∥ .

(3.3)

where the third equality follows from the fact that a convex function achieves its
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maximum on the boundary of its domain, which in our case is a pure state.

So far we were considering only the naïve scheme, where we only measure the
prepared input state. But can we do better than this? The use of additional register
often significantly improves the discrimination. This more general discrimination
scheme will be discussed in the following section.

3.2 Entanglement-assisted discrimination
In this section, we will introduce the entanglement-assisted scheme of discrimination
of quantum channels and measurements. First, we will describe this scheme for
quantum channels and later, we will see how to modify it to discriminate quantum
measurements.

The scheme of discrimination of quantum channels Φ0 and Φ1 is depicted in
Figure 3.2.

Φ0/Φ1

PF 0 / 1

|ψ〉

Figure 3.2: Scheme of single-shot discrimination of quantum channels Φ0 and Φ1.

We begin with preparing an entangled input state |ψ〉 on two registers. Then,
on the first register we apply the channel is contained in the black box – either
Φ0 or Φ1. Then, we prepare a final measurement PF and measure both systems.
Basing on the outcome of the final measurement we make a decision which of the
two channels was inside the black box. If the label of the final measurement was 0,
then we say that in the black box was Φ0. Similarly, when the label of the final
measurement was 1, then we say that in the black box was Φ1.

The probability of successful discrimination between these channels can be
calculated from the Holevo-Helstrom theorem [66,89]. This theorem was stated for
the discrimination of quantum states in Eq. (2.48). Here, we will be interested in
another version of this theorem, which works for the discrimination of quantum
channels, More precisely, assuming that one of the channels, either Φ0 or Φ1, is
given with equal probability, the bound on the probability of correct discrimination
between these channels is upper bounded by

p ≤ 1

2
+

1

4
‖Φ0 − Φ1‖�, (3.4)
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where the distance between Φ0 and Φ1 is expressed in terms of the diamond norm
defined in Eq. (2.50)

Now we proceed to discrimination of quantum measurements. The scheme of
discrimination of quantum measurements P0 and P1 is presented in Figure 3.3.

P0/P1 •

PF 0 / 1

|ψ〉

Figure 3.3: Scheme of single-shot discrimination of quantum measurements P0 and
P1.

The first step of the discrimination scheme is preparing an input state |ψ〉 on
the compound register. Naturally, we can choose an entangled input state. Then,
we measure the first register by the measurement contained in the black box –
either P0 or P1, and obtain a classical label. Basing on this label we prepare a final
measurement PF and measure the second register. Eventually, we make a decision
whether in the black box there was P0 or P1.

The schemes of discrimination of quantum channels and measurements have
many things in common. In both cases we prepare an entangled input state and
apply the black box on only one part of this state. Moreover, in both cases we
make a decision about the content of the black box basing on the outcome of the
final measurements. The key difference is the application of the final measurement.
For discrimination of quantum channels, the final measurement is used to measure
both registers. On the other hand, when discriminating quantum measurements,
after applying the measurement in the black box we have a classical label. Basing
on this label we prepare a final measurement and measure only the second register.

How to calculate the probability of successful discrimination of quantum mea-
surements? We can use the Holevo-Helstrom theorem for discrimination of quantum
channels (see Eq. (3.4)). To do this, we need to know that every quantum mea-
surement P with effects {E1, . . . , Em} can be associated with a quantum channel,
which action on a quantum state ρ can be expressed as [38].

P(ρ) =
m∑
i=1

Tr(Eiρ)|i〉〈i|. (3.5)

This is a quantum-classical channel which output is diagonal, and i-th element on
the diagonal corresponds to the probability of obtaining i-th measurement label.
As we will be mostly interested in discrimination of measurements with rank-one
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effects {|xi〉〈xi|}i, the above formula can be written as

P(ρ) =
m∑
i=1

〈xi|ρ|xi〉|i〉〈i|. (3.6)

Thanks to this representation, from the Holevo-Helstrom we know that the upper
bound on the probability of correct discrimination between quantum measurements
P0 and P1 yields

p ≤ 1

2
+

1

4
‖P0 − P1‖�. (3.7)

The strategy for discrimination of quantum measurements and channels include
preparing input state and final measurement. Let us emphasize here that the form
of the final measurement is given by the Holevo-Helstrom theorem, so we do not
need to search for the best measurement. Nevertheless, the input state needs to be
optimized and there is no general rule for it.

Later in this dissertation, we will be mostly interested in the entanglement-
assisted discrimination scheme. Therefore, whenever we will be talking about a
discrimination scheme, we will implicitly assume that the use of additional system
and entangled input is allowed.

3.3 Discrimination of von Neumann measurements

In this section we will be interested in (entanglement-assisted) discrimination
between two von Neumann measurements. Without loss of generality, for the
symmetric discrimination we can assume that one of the measurements is in the
canonical basis [33,35]. In other words, we are given a black box which contains
either P0 := PU , where U is a fixed unitary matrix, or P1 := P1l. We will use the
entanglement-assisted scheme introduced in the previous section to decide which of
the measurements was hidden the black box.

As von Neumann measurements can be parametrized by unitary matrices, it
should come as no surprise that discrimination of von Neumann measurements is
closely related with the task of discrimination of unitary channels [90–96]. Therefore,
we will often use the well-known [38] result for the diamond norm distance between
unitary channels. This result relates the problem of discrimination of unitary
channels with the notion of numerical range defined in Eq. (2.53).

Proposition 2 ( [38]) Let U ∈ U(X ) and ΦU ∈ C(X ) be a unitary channel. Let
Φ1l = 1lL(X ) be an identity channel. Then

‖ΦU − Φ1l‖� = 2
√

1− ν2, (3.8)
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where ν = min
{
|x| : x ∈ W (U †)

}
.

The rest of this section is organized as follows. We will begin with the case of
perfect discrimination, that is we will state a condition when quantum measurement
PU can be discriminated from P1l with probability one after a single query to the
black box. Later, we will consider more general case when perfect discrimination
may not be achieved after just one query. The main part of this section will be a
theorem stating the probability of correct discrimination in the single-shot case [33].
We will also present its geometrical representation.

The following proposition gives a condition when two von Neumann measure-
ments can be discriminated perfectly in the single-shot scenario. This proposition
was first proved in [97], and later, independently, in [33].

Proposition 3 Let U ∈ U(X ). Von Neumann measurements PU and P1l can be
discriminated perfectly in the single-shot scenario if and only if there exists a state
ρ ∈ D(X ) such that

diag(U †ρ) = 0. (3.9)

Proof. Let ρ ∈ D(X ) be a quantum state satisfying the alternative formula for
the diamond norm in Eq. (2.51), that is

‖PU − P1l‖� = ‖(1l⊗√ρ)J (PU − P1l) (1l⊗√ρ)‖1 . (3.10)

We calculate the diamond norm distance between the POVMs

‖PU − P1l‖� =

∥∥∥∥∥(1l⊗√ρ)

(
d∑
i=1

|i〉〈i| ⊗ (|ui〉〈ui| − |i〉〈i|)>
)

(1l⊗√ρ)

∥∥∥∥∥
1

=

∥∥∥∥∥
d∑
i=1

|i〉〈i| ⊗ (
√
ρ (|ui〉〈ui| − |i〉〈i|)

√
ρ)

∥∥∥∥∥
1

=
d∑
i=1

tr
∣∣√ρ|ui〉〈ui|√ρ−√ρ|i〉〈i|√ρ∣∣

=
d∑
i=1

tr

∣∣∣∣∣〈ui|ρ|ui〉
√
ρ|ui〉√
〈ui|ρ|ui〉

〈ui|
√
ρ√

〈ui|ρ|ui〉
− 〈i|ρ|i〉

√
ρ|i〉√
〈i|ρ|i〉

〈i|√ρ√
〈i|ρ|i〉

∣∣∣∣∣
=

d∑
i=1

√
(〈ui|ρ|ui〉+ 〈i|ρ|i〉)2 − 4 |〈ui|ρ|i〉|2,

(3.11)

where the last equality is a direct application of Lemma 1.
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Now we proceed to proving the direct implication. Assume that PU and P1l can
be discriminated perfectly, that is ‖PU −P1l‖� = 2. Suppose by contradiction that
the condition in Eq (3.9) is not satisfied. Therefore, for every state ρ there exists i
such that 〈ui|ρ|i〉 6= 0. Hence we have the inequality

d∑
i=1

√
(〈ui|ρ|ui〉+ 〈i|ρ|i〉)2 − 4 |〈ui|ρ|i〉|2 <

d∑
i=1

(〈ui|ρ|ui〉+ 〈i|ρ|i〉) = 2. (3.12)

Therefore ‖PU − P1l‖� < 2, which gives a contradiction.
As for the reverse implication, assume there exists a state ρ satisfying Eq. (3.9),

that is, 〈ui|ρ|i〉 = 0 for every i. From Eq. (3.11) we obtain ‖PU − P1l‖� = 2, which
means that the measurements PU and P1l can be discriminated perfectly in the
single-shot scenario.

When the condition in the above proposition is not fulfilled, then the single-shot
scenario does not allow for perfect discrimination. In such case, we still can try to
discriminate the measurements minimizing the probability of making a mistake.
So what is the optimal probability of successful discrimination we can achieve for a
given pair of von Neumann measurements? Here we arrive at the main theorem of
this section. This theorem gives a formula for the diamond norm distance between
any two von Neumann measurements. This theorem was proved in [33], and its
proof requires a great deal of additional technical results, which are presented in
the Appendix A.

Theorem 2 Let U ∈ U(X ) and let PU and P1l be von Neumann measurements.
Let DU(X ) be the set of diagonal unitary matrices of dimension d and ΦU be a
unitary channel. Then

‖PU − P1l‖� = min
E∈DU(X )

‖ΦUE − Φ1l‖�. (3.13)

The probability of correct discrimination between two von Neumann mea-
surements in the single-shot scenario can be calculated directly from the Holevo-
Helstrom theorem (Eq. (3.4)). This is formulated as the following corollary.

Corollary 1 With the notation as in Theorem 2, the probability of correct dis-
crimination between PU and P1l in the single-shot scenario is upper bounded as
follows

p ≤ 1

2
+

1

4
min

E∈DU(X )
‖ΦUE − Φ1l‖�. (3.14)
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Let us finish this section with the geometrical interpretation of the diamond
norm distance between von Neumann measurements. For a given unitary matrix
U ∈ U(X ) of dimension d, we define Θ(U) as the angle of the shortest arc containing
all eigenvalues of U . Let us define an optimized version of Θ as

Υ(U) := min
E∈DU(X )

Θ(UE). (3.15)

Note that in this definition there is the same minimization as in Theorem 2.
Knowing that the distance between unitary channels is expressed by the distance

from zero to the numerical range of a unitary matrix (see Prop. 2), we can generalize
this interpretation to the case of von Neumann measurements. It is presented in
Figure 3.4.

0 λ1 = 1

λd

Υ

‖ · ‖�

Figure 3.4: Geometrical interpretation of the diamond norm distance between von
Neumann measurements PU and P1l. λ1 and λd denote the most distant eigenvalues
of a unitary matrix UE0, where E0 is the optimal diagonal unitary matrix in
Eq. (3.15). The numerical range of UE0 is contained in the gray area.

This figure presents a sector of the complex place with a part of the unit circle.
Let λ1 and λd be the most distant eigenvalues of UE0, where E0 is the optimal
diagonal unitary matrix in Eq. (3.15). In other words, all the other eigenvalues
λ2, . . . , λd−1 lie on the unit circle between λ1 and λd. Without loss of generality we
can take λ1 = 1. The numerical range of the unitary matrix UE0 is the polygon
connecting all its eigenvalues. It the picture it is contained in the gray area. The
diamond norm distance between PU and P1l corresponds to the distance between
λ1 and λd.
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3.4 Discrimination of SIC POVMs

So far, we were studying discrimination of von Neumann measurements, which
effects are rank-one projection onto orthogonal subspaces. Hence, every von
Neumann measurement of dimension d has exactly d effects. In the remaining part
of this chapter we will be interested in discrimination of more general measurements
with rank-one effects. We will write rank-one measurements when talking about
measurements with rank-one effects.

Let us begin with considering the number of effects. How many effects at most
can a rank-one measurement have? The minimum number is the same as the
dimension of the measurement, which is the case of von Neumann measurements.
Nevertheless, the rank-one measurement of dimension d can have more then d
effects. The maximal number of linearly independent effects is d2.

Unfortunately, a rank-one measurement which has more than d effects cannot
be simply parametrized by a unitary matrix, so we cannot use the results known
for discrimination of unitary channels. Fortunately, there is a class of rank-one
measurements having very useful symmetry properties. These measurements are
known as symmetric informationally complete (SIC) POVMs. Let us recall that
a SIC POVM P of dimension d has d2 effects {E1, . . . , Ed2}, where Ei = 1

d
|φi〉〈φi|

and ‖|φi〉‖ = 1 for every i = 1, . . . , d2. Moreover, the symmetry condition states
that

|〈φi|φj〉|2 =
1

d+ 1
(3.16)

for i 6= j.
In this section we will study discrimination of SIC POVMs P0 and P1 of

dimension d having effects {E1, . . . , Ed2} and {F1, . . . , Fd2}, respectively. We will
assume that effects of both measurements P0 and P1 are related by a permutation.
More specifically, for a permutation π of d2 elements we will assume that Fi = Eπ(i).

Recall from Subsection 2.1.3 in the Preliminaries, that is is an open question
whether SIC POVMs exist in every dimension [62]. In this section, we will simply
assume that they do exist for the studied dimensions. We will explore how SIC
POVMs can be discriminated without going into details of properties of specific
dimensions. Hence, in the formulations of theorems concerning SIC POVMs of
bigger dimensions, we will omit the assumption that the SIC POVMs in these
dimensions do exist.

From Holevo-Helstrom theorem it holds that the probability of correct discrimi-
nation between SIC POVMs P0 and P1 is upper-bounded by p ≤ 1

2
+ 1

4
‖P0 −P1‖�.

In this section we will first state a proposition which gives lower and upper bounds
on the diamond norm distance between two SIC POVMs. Later, we will provide
some conclusions which can be drawn from this proposition. Finally, we will
study single-shot discrimination of SIC POVMs when their dimension tends to
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infinity. The results presented in this section have not been published before this
dissertation.

Proposition 4 Let π be a permutation of d2 numbers with k fixed points. Let P0 =
{E1, . . . , Ed2} and P1 = {F1, . . . , Fd2}, where Fi = Eπ(i) for every i = 1, . . . , d2, be
SIC POVMs. Then

2 (d2 − k)√
d3 (d+ 1)

≤ ‖P0 − P1‖� ≤
d2 − k√
d(d+ 1)

. (3.17)

Proof. We will use the following well-known bounds on the diamond norm from
Eq. (2.52)

1

d
‖J(Φ)‖1 ≤ ‖Φ‖� ≤ ‖Tr1|J(Φ)|‖. (3.18)

As for the lower bound, from the properties of the trace norm we have

1

d
‖J(P0)− J(P1)‖1 =

1

d

∥∥∥∥∥
d2∑
i=1

|i〉〈i| ⊗ (Ei − Fi)>
∥∥∥∥∥

1

=
1

d

d2∑
i=1

‖Ei − Fi‖1 , (3.19)

and using Lemma 1 for α = β = 1
d
and |〈u|v〉|2 = 1

d+1
we obtain

‖Ei − Fi‖1 =

√(
2

d

)2

− 4

d2

1

d+ 1
=

√
4

d2

(
1− 1

d+ 1

)
=

2√
d (d+ 1)

. (3.20)

Thus, the lower bound can be expressed as

1

d
‖J(P0)− J(P1)‖1 =

1

d

(
d2 − k

) 2√
d (d+ 1)

=
2 (d2 − k)√
d3 (d+ 1)

. (3.21)

Now we consider the upper bound. First, from the properties of the spectral
norm we have

‖Tr1 |J(P0)− J(P1)|‖∞ =

∥∥∥∥∥Tr1

∣∣∣∣∣
d2∑
i=1

|i〉〈i| ⊗ |Ei − Fi|>
∣∣∣∣∣
∥∥∥∥∥

=

∥∥∥∥∥
d2∑
i=1

Tr1

(
|i〉〈i| ⊗ |Ei − Fi|>

)∥∥∥∥∥ =

∥∥∥∥∥
d2∑
i=1

|Ei − Fi|

∥∥∥∥∥ ,
(3.22)

and from the triangle inequality and the expression for the greatest eigenvalue from

47



Lemma 1 we obtain∥∥∥∥∥
d2∑
i=1

|Ei − Fi|

∥∥∥∥∥ ≤
d2∑
i=1

‖|Ei − Fi|‖ =
d2 − k√
d(d+ 1)

. (3.23)

The bounds in Proposition 4 depend only on the dimension of the measurement,
d, and the number of fixed points, k, of the permutation π. A simple observations
is that if the permutation π has sufficiently many fixed points, the measurements
P0 and P1 will not be discriminated perfectly. More precisely, if

k ≥
⌈
d2 − 2

√
d(d+ 1)

⌉
, (3.24)

then the upper bound for the diamond norm is smaller than two, and thus, these
two SIC POVMs cannot be discriminated perfectly in the single-shot scenario.

A few additional facts about discrimination of qubit SIC POVMs can be ex-
tracted from Proposition 4, which are formulated as two complementary corollaries.
Corollary 2 provides a condition when the use of entangled input state does not
improve the discrimination. Corollary 3 focuses on the qubit case. It states the
exact value of the diamond norm distance between P0 and P1 and points when the
use of entangled input state indeed improves the discrimination.

Corollary 2 Let P0 = {E1, . . . , Ed2} and P1 = {F1, . . . , Fd2}, where Fi = Eπ(i)

for every i = 1, . . . d2, be SIC POVMs. Let π be the permutation with d2 − 2 fixed
points. Then the use of entanglement does not give any advantage in discrimination
between P0 and P1.

Proof. The upper bound for the discrimination without entanglement can be
calculated by the use of Proposition 1 as

p ≤ 1

2
+

1

4
max
ρ
‖diag[(P0 − P1)(ρ)]‖1 =

1

2
+

1

2
max

∆⊆{1,...,d2}

∥∥∥∥∥∑
i∈∆

(Ei − Fi)

∥∥∥∥∥ . (3.25)

Using Lemma 1 we calculate

max
ρ
‖diag[(P0 − P1)(ρ)]‖1 = 2 max

∆⊆{1,...,d2}

∥∥∥∥∥∑
i∈∆

(Ei − Fi)

∥∥∥∥∥
= 2 max

i
‖Ei − Fi‖ = 2

√(
2

d

)2

− 4

d2

1

d+ 1
=

2√
d(d+ 1)

.

(3.26)
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The upper bound for the diamond norm from Eq. (2.52) is given by

‖Tr1 |J(P0)− J(P1)|‖ =
d2 − (d2 − 2)√

d(d+ 1)
=

2√
d(d+ 1)

, (3.27)

and we have the equality.

Note that the above corollary provides only the information that the use of
entanglement does not improve the discrimination when if the permutation π
has d2 − 2 fixed points. Although there is no general condition when the use of
entanglement improves the single-shot discrimination, the following corollary fully
characterizes the qubit case.

Corollary 3 Let P0 = {E1, E2, E3, E4} and P1 = {F1, F2, F3, F4}, where Fi =
Eπ(i), be SIC POVMs. Then ‖P0 − P1‖� = 4−k√

6
, where k is the number of fixed

points of the permutation π. Moreover, if the permutation π has either zero or one
fixed point, then the discrimination with the use of entanglement always outperforms
the discrimination without the use of entanglement.

Proof. First, basing on Proposition 4, we note that for d = 2 the lower bound on
the diamond norm distance between P0 and P1 is equal to the upper bound and
yields

‖P0 − P1‖� =
4− k√

6
. (3.28)

In order to obtain the probability of correct discrimination without the use of
entanglement from Proposition 1, we need to calculate the value

max
ρ
‖P0(ρ)− P1(ρ)‖1 = 2 max

∆⊆{1,...,4}

∥∥∥∥∥∑
i∈∆

(Ei − Fi)

∥∥∥∥∥ . (3.29)

Consider first the case of a permutation with no fixed point. Then, the maximal
value ∆ ⊆ {1, . . . , 4} is achieved for 2-element subset of ∆ and

max
ρ
‖P0(ρ)− P1(ρ)‖1 = 2 ‖Ei + Ej − Ek − El‖ =

2
√

3

3
. (3.30)

If the permutation has one fixed point, then the calculations simplify to the use
of Lemma 1 and calculating the largest eigenvalue of ‖Ei − Ej‖. Eventually, for a
permutation with no fixed point we have

max
ρ
‖P0(ρ)− P1(ρ)‖1 =

2
√

3

3
<

2
√

6

3
= ‖P0 − P1‖� (3.31)
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while for a permutation with one fixed point we have

max
ρ
‖P0(ρ)− P1(ρ)‖1 =

√
6

3
<

√
6

2
= ‖P0 − P1‖�, (3.32)

thus the use of entanglement improves the discrimination. The case of a permutation
with two fixed points follows from Corollary 2.

The above corollary characterized the two-dimensional case. Now we will study
the discrimination for big dimensions. More precisely, we will see that in the
asymptotic limit, when the dimension tends to infinity, the chances of successful
discrimination are very big.

Theorem 3 Let πd be a uniformly chosen random permutation on d2 elements.
Assume that a SIC POVM of dimension d exists. Let P0 = {E1, . . . , Ed2} and
P1 = {F1, . . . , Fd2} be SIC POVMs where Fi = Eπd(i) for some permutation πd.
Then the measurements P0 and P1 can be discriminated perfectly almost surely as
d tends to infinity.

Proof. Let Xd denote the random variable which takes the value of the lower
bound on the diamond norm between a SIC POVM of dimension d and a SIC
POVM permuted according to permutation πd.

In order to prove that Xd
a.s.−→ 2 it suffices to show that for any ε > 0 we have

that
∞∑
d=1

P (|Xd − 2| > ε) <∞. (3.33)

Let ?(πd) be a random variable which denotes the number of fixed points of
the permutation πd. Then using the lower bound for the diamond norm from
Proposition 4 we obtain

Xd(πd) =
2(d2 − n)√
d3(d+ 1)

1l{?(πd)=n}. (3.34)

P

(
Xd =

2(d2 − n)√
d3(d+ 1)

)
= P (?(πd) = n) . (3.35)
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Now, if ?(πd) = n, then

P (|Xd − 2| > ε) = P

(∣∣∣∣∣2(d2 − ?(πd))√
d3(d+ 1)

− 2

∣∣∣∣∣ > ε

)
= P

(
2− 2(d2 − ?(πd))√

d3(d+ 1)
> ε

)

= P

(
?(πd) > d2 −

(2− ε)
√
d3(d+ 1)

2

)

≤ P

(
?(πd) >

ε

2
d2 − d

2

)
,

(3.36)

where the last inequality comes from the fact that

d2 −
(2− ε)

√
d3(d+ 1)

2
≥ ε

2
d2 − d

2
. (3.37)

Knowing that

P (?(πd) = n) =
1

n!

d2−n∑
i=0

(−1)i

i!
(3.38)

we calculate

P (?(πd) > n) =
d2∑

m=n+1

1

m!

d2−m∑
i=0

(−1)i

i!
≤

d2∑
m=n+1

1

m!

∞∑
i=0

1i

i!
= e

d2∑
m=n+1

1

m!
. (3.39)

Finally

∞∑
d=1

P (|Xd − 2| > ε) ≤
∞∑
d=1

P

(
?(πd) >

ε

2
d2 − d

2

)
≤

∞∑
d=1

e
d2∑

m=b ε2d2− d2+1c

1

m!

≤ e
∞∑
d=1

d2 1⌊
ε
2
d2 − d

2

⌋
!
<∞.

(3.40)

and from the Borel-Cantelli lemma we obtain almost sure convergence.

51



52



Chapter 4

Symmetric multiple-shot
discrimination

In the previous chapter, we studied symmetric discrimination in the single-shot
case. We assumed that the black box containing one of two quantum objects could
be used only once. This assumption is a natural starting point for studying the
discrimination of quantum objects. Nonetheless, such a discrimination scheme is
not too general.

Before we describe the multiple-shot discrimination of quantum channels and
measurements, let us quickly review this problem for the discrimination of quantum
states. When a black box contains a quantum state, to get some information about
the state, we need to measure it. However, measuring the state destroys it. As the
output, we obtain only a classical label, and the quantum state ceases to exist. How
would multiple-shot discrimination work in the case when the black box contained
a quantum state? We can prepare many copies of the same black box and measure
each of them. Nevertheless, if we cannot perfectly discriminate between quantum
states in the single-shot scenario, then perfect discrimination cannot be achieved
after any finite number of queries. [98, 99].

When the black box contains either a quantum channel or a measurement,
nothing prevents us from using this black box many times. When we discriminate
quantum channels as the output from the black box, we obtain a quantum state.
This state can also be used as the input in the following query to the black box,
and this procedure can be repeated many times. Such a discrimination scheme is
known as a sequential scheme, but this is only one of many possible discrimination
schemes. The sequential scheme is significantly useful for discrimination of unitary
channels – it allows for perfect discrimination of unitary channels without the use
of entangled states. [95]

When discriminating quantum measurements as the output, we obtain a classical
label, and the measured quantum state ceases to exist. However, as it was described
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in the entanglement-assisted scheme for discrimination of quantum measurements,
we can prepare an input state on a compound space and measure only part of it.
How to generalize this scheme? For instance, we can prepare an input state on
more than two registers and apply the black box on more than one register. We can
also use the classical label to prepare another input state for the following query
to the black box. As we can see, there are many possibilities of generalizing the
single-shot discrimination scheme [67,100,101]. In this chapter, we will focus on
the parallel and adaptive schemes, which will be described in detail in Sections 4.2
and 4.3, respectively.

Later in this chapter, we will study the discrimination of von Neumann mea-
surements in Section 4.4. This section will cover the results proved in [35]. We
will calculate the probability of correct discrimination of such measurements after
N queries in parallel. We will prove that for discrimination of von Neumann
measurement, the use of an adaptive scheme does not give any advantage over
the parallel one. Next, we will focus on the discrimination of SIC POVMs in
Section 4.5, which will be cased on [34] We will see how an adaptive scheme can
improve discrimination.

Before going into details of the parallel and adaptive discrimination schemes, let
us elaborate on the primary goal of multiple-shot discrimination. Recall from the
previous chapter that the term perfect discrimination refers to the identification of
the content of the black box with probability one. We saw in the previous chapter
that it is not always possible to achieve perfect discrimination in the single-shot
scheme. When after a single query to the black box, we cannot discriminate its
content perfectly, we can give the multiple-shot scheme a try. And here arises a
question of whether we can always achieve perfect discrimination after some finite
number of queries to the black box. Unfortunately, this is not the case. Conditions
when perfect discrimination can be achieved in a finite number of queries, will be
studied in Section 4.1.

4.1 Conditions for perfect discrimination

The situation of special importance happens when we can be sure that the dis-
crimination procedure gives the correct answer. In the single-shot case, quantum
channels can be discriminated perfectly, when the right-hand side of Eq. (3.4) equals
one, that is when ‖Φ0 − Φ1‖� = 2. Nevertheless, even if the quantum channels
cannot be discriminated perfectly in the single-shot case, it does not mean that they
cannot be discriminated perfectly at all, as it would be for the discrimination of
quantum states. Recall that when quantum states cannot be discriminated perfectly
after one query, they cannot be discriminated perfectly after any finite number of
queries. [98,99] In the work [81], the authors derived a condition when quantum
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channels can be discriminated perfectly after a finite number of queries to the black
box. Their condition is very general and does not specify what discrimination
scheme should be used.

Before stating this condition, let us define the notion of disjointness of quantum
states and channels. Quantum states ρ0 and ρ1 are disjoint when supp(ρ0) ∩
supp(ρ1) = {0}. The notion of disjointness can be generalized to quantum channels.
We have the following definition.

Definition 3 Two quantum channels Φ0,Φ1 ∈ C(X ) are called (entanglement-
assisted) disjoint if there exists an input state |ψ〉 ∈ D(X ⊗X ) such that the output
states

(
Φ0 ⊗ 1lL(X )

)
(|ψ〉〈ψ|) and

(
Φ1 ⊗ 1lL(X )

)
(|ψ〉〈ψ|) are disjoint.

The condition when quantum channels can be discriminated perfectly in a finite
number of queries is formulated as the following theorem.

Theorem 4 ( [81]) Let Φ0 and Φ1 be quantum channels having Kraus operators
{Mi}i and {Nj}j respectively. Quantum channels Φ0 and Φ1 are can be discrimi-
nated perfectly by a finite number of queries if and only if they are (entanglement-
assisted) disjoint and 1l 6∈ span{M †

iNj}i,j.

Perfect discrimination of quantum measurements is not always achievable.
As quantum measurements can be seen as quantum channels which give diagonal
outputs, we can use the Theorem 4 to check if a given pair of quantum measurements
can be discriminated perfectly after a finite number of queries to the black box. We
will be mostly interested in discrimination of measurements with rank-one effects,
so let us formulate a corollary, when a pair of such rank-one measurements can be
discriminated perfectly after a finite number of queries.

Corollary 4 Let P0 and P1 be POVMs of dimension d with effects {|xi〉〈xi|}mi=1

and {|yi〉〈yi|}mi=1 respectively. Then P0 and P1 are can be discriminated perfectly
after a finite number of uses if and only if

• 1l 6∈ span{|xi〉〈yi|}mi=1

• the number i of effects, for which {|xi〉, |yi〉} are linearly dependent, is smaller
than d.

Proof. The first condition follows directly from the fact that Kraus operators of
P0 and P1 are {|i〉〈xi|}mi=1 and {|i〉〈yi|}mi=1 respectively. Therefore, the condition
from Theorem 4 can be rewritten as

1l 6∈ span{|xi〉〈i|j〉〈yj|}mi,j=1 = span{|xi〉〈yi|}mi=1. (4.1)
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As for the second condition, assume that the set {|x1〉, . . . , |xm〉} is linearly
independent. Similarly, assume that the set {|y1〉, . . . , |ym〉} is linearly independent.
Let |ψ〉 be a quantum state and we define states ρ0 and ρ1 as

ρ0 = (P0 ⊗ 1l)(|ψ〉〈ψ|) =
∑
i

|i〉〈i| ⊗ [ψ]>|xi〉〈xi|>[ψ],

ρ1 = (P1 ⊗ 1l)(|ψ〉〈ψ|) =
∑
i

|i〉〈i| ⊗ [ψ]>|yi〉〈yi|>[ψ].
(4.2)

Then supp(ρ0) = span{|i〉⊗[ψ]>|x̃i〉}i and similarly supp(ρ1) = span{|i〉⊗[ψ]>|ỹi〉}i,
where [ψ]>|x̃i〉 is a normalized vector. We want to see whether supp(ρ0)∩supp(ρ1) =
{0}. Take any ρ ∈ supp(ρ0) ∩ supp(ρ1). Then

ρ =
∑
i

αi|i〉 ⊗ [ψ]>|x̃i〉 =
∑
i

βi|i〉 ⊗ [ψ]>|ỹi〉 (4.3)

from which it follows that

αi[ψ]>|x̃i〉 = βi[ψ]>|ỹi〉 (4.4)

for every i. Therefore, if there does not exist any nonzero ci such that |xi〉 = ci|yi〉,
then it must be αi = βi = 0. If there exists ci such that |x̃i〉 = ci|ỹi〉 then we need
to see whether there exists a state |ψ〉 such that [ψ]>|x̃i〉 = 0. A state |ψ〉 can be
orthogonal to up to d− 1 vectors |xi〉.

4.2 Parallel scheme

Parallel scheme is the most straightforward generalization of the single-shot dis-
crimination scheme [35,102]. In this section, we will focus on the discrimination of
quantum measurements, so the schematic representation of the parallel scheme is
depicted in Figure 4.1 for the case of quantum measurements.

Let N be the number of queries to the black box, which contains either P0 or
P1. We prepare an input state |ψ〉 on N +1 registers and perform the measurement
contained in the black box on the first N registers. The dimension of the additional
(N + 1)-th register is the same as the dimension of the first N registers together.
In other words, we perform the black box measurement N times in parallel. There-
fore, we obtain N classical labels and basing on these labels we prepare a final
measurement, PF , on the last register. After this final measurement we make a
decision whether the black box contained P0 or P1.

Discrimination of measurements P0 and P1 in this scenario can be seen as
discrimination of tensor products of channels P0⊗ . . .⊗P0 and P1⊗ . . .⊗P1, where
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P0/P1 •

P0/P1 •

...

P0/P1 •

PF 0 / 1



|ψ〉

Figure 4.1: Scheme of parallel discrimination of quantum measurements P0 and P1.

similarly as in the single-shot case we consider the channels extended by the identity
channel. In other words, to bound the probability of correct discrimination in the
parallel scheme we can apply the Holevo-Helstrom theorem for tensor products of
channels, that is

p ≤ 1

2
+

1

4

∥∥P⊗N0 − P⊗N1

∥∥
� (4.5)

4.3 Adaptive scheme

Adaptive discrimination scheme is a generalization of the parallel scheme. It allows
for the use of processing between subsequent queries to the black box. We can
adjust the input to the next query to improve the discrimination. The scheme of
adaptive discrimination of quantum measurements is presented in Figure 4.2.

For the sake of simplicity we will explain this scheme in the case when the black
box is used three times. We prepare an input state |ψ〉 on N + 1 registers, which in
this case means that our input state is on four registers. Then, on the top register
we apply the measurement contained in the black box and as a result we obtain
classical label i1. Next, basing on this label we perform processing Ξ1 on all the
remaining registers. In the next step we perform the measurement hidden in the
black box again, this time on the second register. As a result of this measurement
we obtain the classical label i2. Then, we perform the processing Ξ2 on the third
and fourth registers, which this time depends on both labels i1 and i2. In what
follows, the black box is used again, this time on the third register, and we obtain
classical label i3. Finally, taking into account all the labels i1, i2, i3 we prepare a
final measurement, PF , on the last register. Basing on the outcome of this last
measurement we make a decision whether the black box contained either P0 or P1.

57



P0/P1 • • •

Ξ1

P0/P1 • •

Ξ2

P0/P1 •

PF 0 / 1


|ψ〉

Figure 4.2: Scheme of adaptive discrimination of quantum measurements P0 and
P1.

The processing in the adaptive scheme can be any quantum channel. We do
not make many assumptions on the dimensions of these channels, only we need to
make sure that the first register fits the input of the black box in the subsequent
query.

A particular example of the processing is the identity channel. In such case, the
outcome of the previous measurement in the black box does not impact the input
to the next query. This case is equivalent to the parallel discrimination scheme.

4.4 Discrimination of von Neumann measurements
When perfect discrimination is not achievable for a certain pair of von Neumann
measurements in the single-shot scenario, it comes as a natural step to use the
measurement in the black box many times in the hope that this can improve
the discrimination. In this section, we will study both parallel and adaptive
discrimination of von Neumann measurements assuming that the black box can be
used a finite number of times. We will begin with the parallel scheme and we will
calculate the probability of correct discrimination after N queries to the black box
in parallel. Later, we will prove that in the case of von Neumann measurements
the discrimination cannot be improved by the use of adaptive scheme.

Similarly as in Section 3.3, in this section we will assume that the black box
contains one of two von Neumann measurements, either P1l or PU , for some given
unitary matrix U . In other words, we will be discriminating the measurement in
the canonical basis and a measurement in some other basis given by the matrix U .

To calculate the probability of symmetric discrimination between these mea-
surements after N queries in the parallel scheme, we will use the bound from the
Holevo-Helstrom theorem in Eq. (4.5). The key part of this bound is the diamond
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norm distance between tensor products of the measurements. The following theo-
rem, proved in [35], gives the expression for the diamond norm distance between
tensor products of von Neumann measurements.

Theorem 5 Let N ∈ N, U ∈ U(X ) and PU be a von Neumann measurement.
Then

‖PU⊗N − P1l⊗N‖� = min
E∈DU(X )

‖ΦU⊗NE⊗N − Φ1l⊗N‖� . (4.6)

Proof. We will consider two cases, when ‖PU − P1l‖� = 2, and when ‖PU − P1l‖� <
2. We will begin with the former case, when ‖PU − P1l‖� = 2, which means that
PU and P1l can be discriminated perfectly in a single-shot scheme. Then, from
Theorem 2 it holds that

‖PU − P1l‖� = min
E∈DU(X )

‖ΦUE − Φ1l‖� = 2. (4.7)

Therefore, for each N ∈ N also the measurements PU⊗N and P1l⊗N can be discrimi-
nated perfectly, that is ‖PU⊗N − P1l⊗N‖� = 2. Moreover, it also holds that

‖PU⊗N − P1l⊗N‖� = min
F∈DU(X⊗N )

∥∥Φ(U⊗N )F − Φ1l⊗N
∥∥
�

≤ min
E∈DU(X )

‖ΦU⊗NE⊗N − Φ1l⊗N‖� ≤ 2,
(4.8)

which finishes the proof in this case.
Now we will consider the second case when ‖PU − P1l‖� < 2, that is when PU

and P1l cannot be discriminated perfectly in the single-shot scenario. Then, from
Theorem 2 there exists an optimal matrix E0 ∈ DU(X ) such that ‖PU − P1l‖� =
‖ΦUE0 − Φ1l‖� and 0 6∈ W (UE0). In the following part of the proof we will be
working towards constructing an input state ρ0 := 1

2
ρ1 + 1

2
ρd, which will be optimal

for discrimination between PU⊗N and P1l⊗N . To do so, we will use Lemma 5 in
Appendix A, thus now we will check whether all the assumptions of this Lemma
are fulfilled.

Thanks to the equality minE∈DU(X ) ‖ΦUE − Φ1l‖� = ‖ΦUE0 − Φ1l‖� we have

max
E∈DU(X )

min
ρ∈D(X )

|Tr(ρUE)| = min
ρ∈D(X )

|Tr(ρUE0)|. (4.9)

Therefore, using the fact that 0 6∈ W (UE0), we see that minρ∈D(X ) |Tr(ρUE0)| > 0.
From Lemma 8 in Appendix A, we know that the function (ρ, E) 7→ |Tr(ρUE)|
has a saddle point. Therefore, all the assumptions of Lemma 5 are satisfied for the
matrix E0. Let λ1 and λd denote a pair of the most distant eigenvalues of UE0.
From Lemma 5 there exist states ρ1, ρd ∈ D(X ) such that diag(ρ1) = diag(ρd) as
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well as ρ1 = P1ρ1P1, ρd = PdρdPd, where P1, Pd denote the projectors onto the
subspaces spanned by the eigenvectors corresponding to λ1 and λd, respectively.

In the remaining part of the proof we will study two cases: when PU and
P1l cannot be discriminated perfectly after N queries, and the case when perfect
discrimination is achieved after N steps.

Assume that PU and P1l cannot be discriminated perfectly after N queries,
which means that 0 6∈ W

(
U⊗NE⊗N0

)
. Note that as diag(ρ1) = diag(ρd), then also

diag(ρ⊗N1 ) = diag(ρ⊗Nd ). (4.10)

Moreover, ρ⊗N1 , ρ⊗Nd lie on the subspaces spanned by the eigenvectors corresponding
to the eigenvalues λN1 and λNd of the matrix U⊗NE⊗N0 . Therefore, all the latter
assumptions of Lemma 5 are fulfilled. From the reverse implication of this Lemma
we have that the unitary matrix E⊗N0 is optimal and for ρ0 = 1

2
ρ⊗N1 + 1

2
ρ⊗Nd it holds

that

min
ρ∈D(X )

∣∣tr (ρ(UE0)⊗N
)∣∣ =

∣∣tr (ρ0(UE0)⊗N
)∣∣

= max
F∈DU(X⊗N )

min
ρ∈D(X⊗N )

∣∣tr (ρU⊗NF)∣∣ . (4.11)

Hence ∥∥∥ΦU⊗NE⊗N0
− Φ1l⊗N

∥∥∥
�

= min
F∈DU(X⊗N )

‖ΦU⊗NF − Φ1l⊗N‖�

≤ min
E∈DU(X )

‖ΦU⊗NE⊗N − Φ1l⊗N‖�
(4.12)

and eventually

‖PU⊗N − P1l⊗N‖� = min
E∈DU(X )

‖ΦU⊗NE⊗N − Φ1l⊗N‖� . (4.13)

In the second case, we assume 0 ∈ W
(
U⊗NE⊗N0

)
. Let us consider the situation

when N is the first index for which this happens, that is 0 6∈ W
(
U⊗N−1E⊗N−1

0

)
.

Then 0 ∈ conv(λN1 , λ1λ
N−1
d , λNd ) and there exists a probability vector p = (p1, p2, p3)

such that
p1λ

N
1 + p2λ1λ

N−1
d + p3λ

N
d = 0. (4.14)

We will show that for the state

ρ := p1ρ
⊗N
1 + p2

(
ρ1 ⊗ ρ⊗N−1

d

)
+ p3ρ

⊗N
d . (4.15)
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it holds that diag
(
ρU⊗N

)
= 0. Indeed

diag
(
ρU⊗NE⊗N0

)
= diag

(
p1λ

N
1 ρ
⊗N
1 + p2λ1λ

N−1
d

(
ρ1 ⊗ ρ⊗N−1

d

)
+ p3λ

N
d ρ
⊗N
d

)
= p1λ

N
1 diag(ρ⊗N1 ) + p2λ1λ

N−1
d diag

(
ρ1 ⊗ ρ⊗N−1

d

)
+ p3λ

N
d diag(ρ⊗Nd )

=
(
p1λ

N
1 + p2λ1λ

N−1
d + p3λ

N
d

)
diag(ρ⊗N1 ) = 0.

(4.16)

Therefore, from Proposition 3 we obtain that PU⊗N and P1l⊗N can be discriminated
perfectly, that is ‖PU⊗N − P1l⊗N‖� = 2 and hence

‖PU⊗N − P1l⊗N‖� = min
E∈DU(X )

‖ΦU⊗NE⊗N − Φ1l⊗N‖� . (4.17)

When M is the first index for which 0 ∈ W (U⊗ME⊗M0 ) and N > M , then the
equality ‖PU⊗M − P1l⊗N‖� = 2 implies that ‖PU⊗N − P1l⊗N‖� = 2. Therefore,

‖PU⊗N − P1l⊗N‖� = min
E∈DU(X )

‖ΦU⊗NE⊗N − Φ1l⊗N‖� , (4.18)

which completes the proof.

Number of queries for perfect discrimination Let us begin with introducing
the notation. Given a unitary matrix U ∈ U(X ), let Θ(U) be the angle of the
shortest arc containing all eigenvalues of U . We will also take advantage of the
optimized version of Θ(U) defined in Eq. (3.15). Geometrical representation of
these quantities was sketched in Figure 3.4 in Sec. 3.3, when we were studying
single-shot discrimination of von Neumann measurements. The pair of most distant
eigenvalues of the unitary matrix, is denoted on the unit circle by λ1 and λd.
The arc between them is signed as thick line and denoted by the symbol Υ. The
numerical range of unitary matrix in contained in the gray area. The distance
between λ1 and λd corresponds to the diamond norm distance between PU and P1l.

Now we are in position to address the question how many times do we need to
use the black box to obtain perfect discrimination. Let us recall that if quantum
states cannot be discriminated perfectly in the single-shot scheme, they cannot be
discriminated perfectly after any finite number of queries [98, 99]. On the other
hand, in contrast to discrimination of quantum states, even if quantum channels
cannot be discriminated perfectly in the single-shot scenario, in some cases one
may achieve perfect discrimination after a finite number of queries. For example,
in the case of discrimination of unitary channels ΦU and Φ1l, perfect discrimination
can be always achieved in N = d π

Θ(U)
e steps [91].

As for the discrimination of von Neumann measurements in the parallel scheme,
let us analyze an example when the black box is used three times. This is sketched
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in Figure 4.3.

0 λ1

λd

Υ

0 λ1

λ2
d

2Υ

0 λ1

λ3
d

3Υ

Figure 4.3: Geometrical interpretation of probability of successful discrimination
between von Neumann measurements in the parallel scheme. The left, middle and
right figures correspond to one, two and three queries, respectively. The numerical
ranges of matrices UE0, (UE0)2 and (UE0)3 respectively, are contained in the gray
areas.

The left figure corresponds to the first query to the black box. We are discrim-
inating von Neumann measurements PU and P1l, and we use the notation as in
Fig. 3.4. The most distant eigenvalues of the optimized matrix UE0 are denoted
by λ1 = 1 and λd. The gray area contains the numerical range of the matrix
UE0. We can see that zero is not included in the numerical range, hence perfect
discrimination cannot be achieved after the first query. After the second query
we are actually discriminating between PU⊗2 and P1l⊗2 , hence the most distant
eigenvalues are now λ2

1 = λ1 = 1 and λ2
d. This is presented in the middle figure.

The numerical range is now much bigger, but it still does not contain zero, so
perfect discrimination is not obtained. The third query is depicted in the right
figure. Now we are discriminating between PU⊗3 and P1l⊗3 , and the most distant
eigenvalues are λ3

1 = 1 and λ3
d. This time, finally, the numerical range contains zero

and we obtain perfect discrimination between PU and P1l after three queries.
The following proposition gives an expression for the diamond norm distance

between tensor products of von Neumann measurements. This allows us to directly
calculate the minimal number of queries needed for perfect discrimination between
von Neumann measurements.

Proposition 5 Let N ∈ N, U ∈ U(X ). It holds that

(i) if NΥ(U) < π, then ‖PU⊗N − P1l⊗N‖� = 2 sin
(
N
2

Υ(U)
)
;
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(ii) if NΥ(U) ≥ π, then ‖PU⊗N − P1l⊗N‖� = 2.

Proof. From Theorem 5 we know that when the matrix UE0 is in the optimal
form, then also the matrix (UE0)⊗N is optimal. Hence, to calculating the diamond
norm distance between PU⊗N and P1l⊗N reduces to the problem of determining the
value Θ((UE0)⊗N).

One can observe that Θ((UE0)⊗N) = NΘ(UE0), until 0 ∈ W
(
(UE0)⊗N

)
(see

Fig. 4.3). Therefore, in the case NΥ(U) < π, the diamond norm distance between
PU⊗N and P1l⊗N equals to the distance between two most distant eigenvalues of
(UE0)⊗N , which is can be expressed as 2 sin

(
N
2

Υ(U)
)
. On the other hand, when

NΥ(U) ≥ π, then 0 ∈ W
(
(UE0)⊗N

)
and the diamond norm distance between

PU⊗N and P1l⊗N equals two.
Moreover, the first time zero enters the numerical range W

(
(UE0)⊗N

)
is equal

to N = d π
Υ(U)
e.

From the above Proposition we can formulate a corollary which provides an ex-
pression for the minimal number of queries required to obtain prefect discrimination
between von Neumann measurements.

Corollary 5 The minimal number of queries needed to perfectly discriminate
between PU and P1l in the symmetric setting equals N = d π

Υ(U)
e.

So far we were studying only the parallel discrimination of von Neumann
measurements. We know how to calculate the optimal probability of successful
discrimination after N queries and how many queries are needed to achieve perfect
discrimination. Let us focus on the case when a pair of measurements can be
discriminated perfectly inN queries in parallel. The natural question arises, whether
is it possible to achieve perfect discrimination using the black box fewer times,
utilizing some processing between subsequent queries. It may seem intuitive that
when we can perform processing, we can prepare a better input for the subsequent
query to the black box. Hence, we should be able decrease the number of queries
to the black box at the cost of additional processing. It turns out that it is not
the case, and whenever the measurements require N queries to be discriminated
perfectly, the number of queries cannot be decreased by the use of adaptive scheme.

In some cases perfect discrimination cannot be achieved in the parallel scheme.
One can ask a question if it is possible to discriminate these measurements perfectly
using the adaptive scheme. Or at least, does the adaptive scheme allow for improving
the probability of successful discrimination compared to the parallel one. The
answer for both questions is negative. The following theorem will prove that the
use of adaptive scheme does not give any advantage over the parallel one when
discriminating von Neumann measurements.
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Theorem 6 The parallel scheme is optimal for discrimination of von Neumann
measurements.

Proof. Without loss of generality we may assume that the processing is performed
using only unitary operations. Indeed, using Stinespring dilation theorem, any
channel might be represented via a unitary channel on a larger system followed by
the partial trace operation. What is left to observe is that ‖trB(XAB)‖1 ≤ ‖XAB‖1

for arbitrary bipartite matrix XAB.
The sequential scheme of discrimination of von Neumann measurements can be

expressed as a channel
ΨU = (∆1,...,N ⊗ 1l) ΦAU , (4.19)

associated with a matrix AU . Here ∆1,...,N is the dephasing channel on subsystems
1, . . . , N . The channel ΦAU has the exact form of this transformation given by

AU = (1l1,...N−1 ⊗ U ⊗ 1lN+1) ∑
i1,...,iN−1

|i1, . . . , iN−1〉〈i1, . . . , iN−1| ⊗ V (N−1)
i1,...,iN−1


(1l1,...,N−2 ⊗ U ⊗ 1lN,N+1) ∑
i1,...,iN−2

|i1, . . . , iN−2〉〈i1, . . . , iN−2| ⊗ V (N−2)
i1,...,iN−2


. . .

(1l1 ⊗ U ⊗ 1l3,...N+1)(∑
i1

|i1〉〈i1| ⊗ V (1)
i1

)
(U ⊗ 1l2,...N+1) .

(4.20)

Assuming that matrix U is chosen in the optimal form as in (3.15) ie. Υ(U) =
Θ(U) we may calculate the distance between ΨU and Ψ1l as

max
ρ
‖(ΨU −Ψ1l) (ρ)‖1 = max

ρ
‖[(∆1,...,N ⊗ 1l) (ΦAU − ΦA1l

)] (ρ)‖1

≤ max
ρ
‖(ΦAU − ΦA1l

) (ρ)‖1

≤ max
ρ
‖(ΦU⊗N⊗1l − Φ1l) (ρ)‖1

= ‖ΦU⊗N − Φ1l‖� = ‖PU⊗N − P1l‖� ,

(4.21)

where we maximize over states ρ of appropriate dimensions. The induced trace

64



norm is monotonically decreasing under the action of channels and this gives us the
first inequality. The second one follows from the optimality of the parallel scheme
of distinguishing unitary channels [100]. Summing up, the adaptive scenario does
not give any advantage over the parallel scheme.

4.5 Discrimination of SIC POVMs
In the previous section we showed that the adaptive scheme cannot improve the
discrimination of von Neumann measurements. But is the parallel discrimination
scheme also optimal for more general measurements with rank-one effects? In this
section we will see that in some situations the adaptive scheme can significantly
improve the discrimination.

We will focus on a class of rank-one measurements having useful symmetry
properties, which are SIC POVMs. Discrimination of SIC POVMs in the single-shot
case was studied in Section 3.4, hence, in this section we will use the notation
introduced in Section 3.4.

We will begin with studying when perfect discrimination can be achieved for
a pair of qubit SIC POVMs. It appears that this property can be characterized
only by the length of cycles of the permutation. Only permutations which contain
a cycle of length 4 can be perfectly discriminated by a finite number of uses in
parallel. On top of that, to perfectly discriminate these measurements it suffices to
use the black box two times. The optimal states needed for the discrimination will
also be stated. Nevertheless, in the case of permutations which do not contain a
cycle of length 4, perfect discrimination cannot be achieved after any finite number
of queries. The following proposition has not yet been published.

Proposition 6 Let P0 = {E1, . . . , E4} and P1 = {F1, . . . , F4} be SIC POVMs,
where Fi = Eπ(i) for every i = 1, . . . , 4. Then

• if the permutation π contains a cycle of length 4, then P0 and P1 can be
discriminated perfectly after two queries in parallel;

• if the permutation π does not contain a cycle of length 4, then P0 and P1

cannot be discriminated perfectly after any finite number of queries in parallel.

Proof. We will see when a pair of rank-one measurements can be discriminated
perfectly in a finite number of uses by checking conditions from Corollary 4,
where Ei = |xi〉〈xi| and Fi = |yi〉〈yi| for every i. One can directly check that
1l 6∈ span{|xi〉〈yi|}i only if the permutation π contains a cycle of length 4. As for
the second condition from Corollary 4, it states that the number of effects for which
|xi〉 and |yi〉 are linearly dependent must be smaller than d. In our case this directly
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translates to the number of fixed points of the permutation π. More precisely, this
condition is fulfilled if the number of fixed points of the permutation π is smaller
than 2. Summing up, if the permutation π contains a cycle of length 4, then P0

and P1 can be discriminated perfectly.
It remains to prove that perfect discrimination can be achieved by two uses in

parallel. We note that for permutations (4, 3, 1, 2) and (3, 4, 2, 1) the optimal input
state for the discrimination is

ρ =
1

3


1 1√

8
1√
8

1
2

1√
8

1
2

1
2
− 1√

8
1√
8

1
2

1
2
− 1√

8
1
2
− 1√

8
− 1√

8
1

 .
For permutations (2, 4, 1, 3) and (3, 1, 4, 2) the optimal input state is

ρ =
1

3


1 a a c

a 1
2

1
2

b

a 1
2

1
2

b
c b b 1


where a = 1√

8
e−i 2

3
π, b = 1√

8
eiπ

3 and c = 1
2
e−i 2

3
π, while for permutations (2, 3, 4, 1)

and (4, 1, 2, 3) the optimal input state is

ρ =
1

3


1 a a c
a 1

2
1
2

b
a 1

2
1
2

b

c b b 1

 .

Now we proceed to studying the parallel discrimination of SIC POVMs for any
dimension. Naturally, we assume that SIC POVMs in given dimensions exist. We
will focus on the diamond norm distance between a pair of tensor products of SIC
POVMs. The following proposition, which is a new result, states the lower bound
on this distance.

Proposition 7 Let P0 = {E1, . . . , Ed2} and P1 = {F1, . . . , Fd2} be SIC POVMs,
where Fi = Eπ(i) for every i = 1, . . . , d2. Let k denote the number of fixed points of
the permutation π. Then, the diamond norm distance between P⊗N0 and P⊗N1 is
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lower-bounded as

∥∥P⊗N0 − P⊗N1

∥∥
� ≥

2

d2N

N∑
s=1

γk,N(s)(d2 − k)s

√
1− 1

(d+ 1)s
, (4.22)

where γk,N(s) =
(
N
N−s

)
kN−s and γ0,N(N) = 1. Moreover, when the permutation π

does not have fixed points, then

∥∥P⊗N0 − P⊗N1

∥∥
� ≥ 2

√
1− 1

(d+ 1)N
. (4.23)

Proof. We will calculate the lower bound from Eq (2.52), that is we will calculate∥∥P⊗N0 − P⊗N1

∥∥
� ≥

1

dN
∥∥J (P⊗N0

)
− J

(
P⊗N1

)∥∥
1
. (4.24)

We begin with stating the Choi matrices of the measurements

J(P⊗N0 ) =
d2∑

i1,...,iN=1

|i1 . . . iN〉〈i1 . . . iN | ⊗ (Ei1 ⊗ . . .⊗ EiN )> ,

J(P⊗N1 ) =
d2∑

i1,...,iN=1

|i1 . . . iN〉〈i1 . . . iN | ⊗ (Fi1 ⊗ . . .⊗ FiN )> .

(4.25)

Now we calculate

∥∥J (P⊗N0

)
− J

(
P⊗N1

)∥∥
1

=
d2∑

i1,...,iN=1

‖Ei1 ⊗ . . .⊗ EiN − Fi1 ⊗ . . .⊗ FiN‖1 (4.26)

and from Lemma 1 we have

‖Ei1 ⊗ . . .⊗ EiN − Fi1 ⊗ . . .⊗ FiN‖1

=

∥∥∥∥ 1

dN
|φi1 . . . φiN 〉〈φi1 . . . φiN | −

1

dN
|φπ(i1) . . . φπ(iN )〉〈φπ(i1) . . . φπ(iN )|

∥∥∥∥
1

=

√(
2

dN

)2

− 4

d2N

∣∣〈φi1 . . . φiN |φπ(i1) . . . φπ(iN )〉
∣∣2.

(4.27)
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Hence

∥∥J(P⊗N0 )− J(P⊗N1 )
∥∥

1
=

d2∑
i1,...,iN=1

√(
2

dN

)2

− 4

d2N

∣∣〈φi1 . . . φiN |φπ(i1) . . . φπ(iN )〉
∣∣2

=
2

dN

d2∑
i1,...,iN=1

√
1−

∣∣〈φi1 . . . φiN |φπ(i1) . . . φπ(iN )〉
∣∣2

(4.28)

The value of
∣∣〈φi1 . . . φiN |φπ(i1) . . . φπ(iN )〉

∣∣2 depends on the number of fixed
points of the permutation π, that is

∣∣〈φi1 . . . φiN |φπ(i1) . . . φπ(iN )〉
∣∣2 = 1

(d+1)s
where s

is the number of 〈φil |φπ(il)〉 for which |〈φil |φπ(il)〉| 6= 1.
Finally, the lower bound for diamond norm distance between tensor products

of SIC POVMs yields

2

d2N

N∑
s=1

γk,N(s)(d2 − k)s

√
1− 1

(d+ 1)s
(4.29)

where
γk,N(s) =

(
N

N − s

)
kN−s (4.30)

and γ0,N(N) = 1. Moreover, when the permutation π does not have fixed points,
then we substitute k = 0 and the above simplifies to

2

√
1− 1

(d+ 1)N
. (4.31)

The following proposition provides conditions when quantum measurements
can be discriminated perfectly in the adaptive scheme, but cannot be discriminated
perfectly after any finite number of steps in the parallel scheme.

Proposition 8 Let P0 and P1 be quantum measurements of dimension d with
effects {|xi〉〈xi|}i and {|yi〉〈yi|}i respectively. If

• 1l 6∈ span{|xi〉〈yi|}i,

• the number of effects for which |xi〉 and |yi〉 are linearly dependent is smaller
than d.

• span{|xi〉〈yi|}i contains a positive operator ρ > 0,
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then P0 and P1 can be discriminated perfectly only by the adaptive scheme.

The first and second conditions in the above Proposition come from the Corol-
lary 4. They assure that quantum measurements can be discriminated perfectly
after a finite number of queries to the black box. The last condition corresponds to
the fact that the parallel scheme is not sufficient for perfect discrimination and one
needs to utilize the adaptive scheme [102].

The first example of quantum channels, which require the adaptive strategy to
be perfectly discriminated, was introduced in [103]. Now we can see that many
pairs of quantum measurements fulfill the conditions of the above Corollary and
require adaptive strategies to be discriminated perfectly. We will construct an
exemplary pair of such measurements and present a detailed scheme of adaptive
discrimination [34]. It should come as no surprise that this example will be related
with SIC POVMs. However, they cannot be of dimension two. Recall from
Proposition 6 that a pair of qubit SIC POVMs can be either discriminated perfectly
after two queries in parallel or they cannot be discriminated perfectly after any
finite number of queries. Hence, to find a good example, we will look into SIC
POVMs of dimension three.

Measurements which can be discriminated only adaptively. Now we will
construct an example of measurements which can be discriminated perfectly only in
the adaptive scheme. We will use the construction of qutrit SIC POVMs from [104].
Given a matrix

1√
2

 0 0 0 −1 −ω3 −ω2
3 1 1 1

1 1 1 0 0 0 −1 −ω3 −ω2
3

−1 −ω3 −ω2
3 1 1 1 0 0 0

 (4.32)

where ω3 = exp
(

2πi
3

)
, we define the SIC POVM P0 as a quantum measurement

having effects {|xi〉〈xi|}i, where |xi〉 is the i-th column of the matrix (4.32). Let
π = (9, 8, 7, 3, 1, 2, 6, 4, 5) be a permutation. We define P1 as a SIC POVM with
effects {|yi〉〈yi|}i, where |yi〉 = |xπ(i)〉 for i = 1, . . . , 9.

Let us verify that P0 and P1 indeed require adaptive scheme to be discriminated
perfectly. We will check the conditions from Proposition 8. The first condition
can be checked directly. The second condition is trivially fulfilled due to the SIC
condition and the fact that the permutation π has no fixed points. As for the third
condition, that is the existence of positive operator in span{|xi〉〈yi|}i, it can be
checked by the following iterative algorithm which was introduced in Section 5
in [34].
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Algorithm for finding a positive operator (last condition in Proposi-
tion 8)

(i) Construct a projection operator P on the space span{|xi〉〈yi|}mi=1 and choose
an initial operator X ∈ L(X ).

(ii) Project X onto the subspace given by P , obtaining some operator Y .

(iii) Substitute the operator X with the quantum state closest to Y .

(iv) Repeat the procedure from points (ii) and (iii) until it converges or a predefined
number of steps is achieved.

(v) Verify if the obtained operator is of full rank.

Scheme of adaptive discrimination Now we will focus on describing the
scheme of adaptive discrimination between SIC POVMs P0 and P1 in greater detail.
The adaptive procedure is depicted in Figure 4.4 and for the sake of clarity, we will
be denoting the space X as corresponding to the top register and the spaces Y , Z
will correspond to second and third registers, respectively. As both P0 and P1 are
qutrit SIC POVMs, all the spaces X ,Y ,Z are actually equal C3.

X P0/P1 • •

Y
Ui

Y
P0/P1 •

Z
PF 0 / 1

|ψ〉

Figure 4.4: Scheme of adaptive discrimination between SIC POVMs P0 and P1.

Before presenting the algorithm, let us introduce some additional notation. Let
|ψi〉 := |xi〉

‖|xi〉‖ and |ϕi〉 := |yi〉
‖|yi〉‖ for every i = 1, . . . , 9.

Let A ∈ L(X ) be a nonzero matrix satisfying

A ⊥ span{|xi〉〈yi|}i. (4.33)

Note that such a matrix exists due to the fact that rank (span{|xi〉〈yi|}i) < 9. Let
A = UΣV † be the singular value decomposition of this matrix. (See Eq. (2.8), where
Σ is a diagonal matrix of singular values and matrices U and V form orthonormal
bases.)
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We define vectors ˜|ξ〉, ˜|η〉 ∈ Y ⊗ Z as

˜|ξ〉 := |U
√

Σ〉〉, ˜|η〉 := |V
√

Σ〉〉 (4.34)

and see that they fulfill the condition

TrZ ˜|ξ〉 ˜〈η| = A.

We also define the normalized vectors |ξ〉 :=
˜|ξ〉
‖ ˜|ξ〉‖ and |η〉 :=

˜|η〉
‖ ˜|η〉‖ .

Finally, for every i = 1, . . . , 9 we define an isometric channel ΦUi(·) for Ui ∈
U(Y ,Y ⊗ Z) given by the conditions

Ui|ψi〉 = eiθi |ξ〉
Ui|ϕi〉 = |η〉

(4.35)

where θi = β − αi for 〈ψi|ϕi〉 = rie
iαi and 〈ξ|η〉 = reiβ.

Now, we are in the position to present the algorithm for the adaptive discrimi-
nation between P0 and P1.

Algorithm for adaptive discrimination between SIC POVMs.

1. Prepare an input state |ψ〉 = 1√
d
|1lX 〉〉 on the first and second registers.

2. Perform the unknown measurement, either P0 or P1, on the first register, and
obtain a label i. Note that at the same time on the second register the state
is either |ψi〉 or |ϕi〉 ∈ Y .

3. Based on the label i, perform an isometric channel ΦUi on the second register.
After performing this isometric channel there is a new – third register Z.

4. Perform the unknown measurement on the (second) register Y and obtain a
label j.

5. Finally, measure the third register and make a decision whether in the black
box there was either P0 or P1.

So far we know how to adaptively discriminate pairs of SIC POVMs of dimension
three. One may ask a question if the same thing can be done more generally, for
higher dimensions. Although the algorithm is described for dimension three, nothing
stands in the way to apply it in higher dimensions. One can numerically check
that in dimension four there also exist pairs of SIC POVMs which can be perfectly
discriminated only by the use of adaptive scheme. For such pairs one can also use
the above algorithm.
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4.6 Discrimination of general rank-one POVMs
We already know that in the case of von Neumann measurements the parallel scheme
is optimal for discrimination. However, in the previous section we saw an example
where the use of the adaptive scheme significantly improves the discrimination. More
precisely, the adaptive scheme allowed for perfect discrimination of measurements
which could not be discriminated perfectly after any finite number of queries in
the parallel scheme.

From the above paragraph we can see that when rank-one measurements
of dimension d have d effects, then the parallel scheme is always sufficient for
discrimination. That was the case of von Neumann measurements. On the other
hand, when the rank-one measurements have d2 effects, then the adaptive scheme
may improve the discrimination. So what happens if the rank-one measurements
have d < m < d2 effects? We will study this problem numerically. We will generate
random rank-one measurements with m effects and check whether pairs of the
generated measurements require adaptive strategies for perfect discrimination.

Generating random rank-one POVMs. Let describe the procedure of gen-
erating random measurements of dimension d with d < m < d2 rank-one effects
{|xi〉〈xi|}mi=1. We begin with generating a Haar-random isometry of dimensions
d×m. [105,106] Then, we take projectors onto the columns {|xi〉}mi=1 of this matrix.
The obtained projections {|xi〉〈xi|}mi=1 are the effects of the generated rank-one
measurement.

As we know how to generate random rank-one measurements, we need be able
to check when adaptive scheme improves the discrimination. We will focus on the
case when this pair of measurements cannot be discriminated perfectly using the
parallel scheme, but the adaptive scheme allows for perfect discrimination. To see
when this is the case, we need to check if the conditions from the Proposition 8 are
fulfilled.

Assume we have taken at random a pair of measurements, say P0 and P1, with
effects {|xi〉〈xi|}mi=1 and {|yi〉〈yi|}mi=1, respectively. We will go through each point
of the Proposition 8 and see how to check them for our random pair of rank-one
measurements.

The first condition requires verifying if the space span{|xi〉〈yi|}i does not contain
the identity operator. As our measurements are generated according to the above
algorithm, we know that any pair of |xi〉 and |xj〉 is orthogonal. Hence, if m = d2,
then 1l ∈ span{|xi〉〈yi|}i, while for d ≤ m < d2 it holds that 1l 6∈ span{|xi〉〈yi|}.
The second condition requires that the number of effects for which |xi〉 and |yi〉 are
linearly independent is smaller than d. For the measurements generated in the way
described above, this condition is always fulfilled. In the third condition we need
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to check if span{|xi〉〈yi|}mi=1 contains a positive operator. To to this, we can utilize
the iterative algorithm introduces in the previous section after Proposition 8.

Summing up, the first condition is fulfilled as long as m < d2. The second
condition is always fulfilled for rank-one measurements. Therefore, to verify
if the adaptive scheme improves discrimination between the generated pairs of
measurements, we need to numerically check the last condition, that is use the
algorithm for finding the positive operator in span{|xi〉〈yi|}mi=1.

Simple numerical calculations show that for dimension two there exist pairs of
rank-one measurements which fulfill the third condition from Proposition 8. These
measurements have three effects. Additionally, it turns out that in the qubit case
the probability of finding a pair of POVMs which require adaptive scheme to be
perfectly discriminated is roughly equal to 4

10
.

As we know the qubit case, what about higher dimensions? Does adaptive
scheme improves the discrimination? How does it depend on the number of effects?
We studied this problem numerically for dimension d = 7. We sampled N = 106

pairs of random rank-one POVMs according to the algorithm described at the
beginning of this section. These measurements have d < m < d2 effects. For
each pair of measurements we checked the third condition from Proposition 8
using the algorithm for finding the positive operator in span{|xi〉〈yi|}mi=1 which was
introduces in the previous section. Figure 4.5 shows the numerically calculated
probability that this condition is fulfilled, as a function of the number of number
of measurement’s effects [34].

We can see in the figure that as the number of effects increases, so does the
probability that the adaptive scheme is needed for perfect discrimination. This
agrees with the results discussed earlier in this chapter. When m = d, then we
have von Neumann measurements and they can always be discriminated perfectly
in the parallel scheme. On the other hand, when m = d2, then span{|xi〉〈yi|}i gives
the entire space Cd and we are guaranteed to find the identity operator in it. In
such case, random measurements with d2 effects cannot be discriminated perfectly
after any finite number of uses. Note that the situation is a bit different in the
case of SIC POVMs as they fulfill the SIC condition in Eq. (3.16). In general, it is
clear that we are more likely to need the adaptive scheme for perfect discrimination
when the number of effects is closer to d2.
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Figure 4.5: Numerically estimated lower bound for the probability pρ of an event
that for two randomly sampled POVMs with rank-one effects the adaptive scenario
is necessary for achieving perfect discrimination. The probability is plotted as
a function of the number of effects m for the dimension d = 7. The number of
samples per point is N = 106.
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Chapter 5

Unambiguous discrimination

In many real-life situations making mistakes can be very costly. When dealing
with valuable objects, we do not want to confound them. A similar situation
concerns the discrimination of quantum objects. In some situations, we may be
specifically interested in discriminating them and being sure that we do not make
a mistake. The situation is simple when quantum channels or measurements
can be discriminated perfectly. Unfortunately, in most situations this is not
the case. Then we have two options. We can either perform the protocol of
symmetric discrimination, thus minimize the probability of making an erroneous
decision. The major drawback of this approach is that whenever we get the result
of discrimination, this result is correct only up to some probability. The second
option is to use another approach to the discrimination problem known as the
unambiguous discrimination. Unambiguous discrimination was first studied for
discrimination of quantum states [107–112], and later also for discrimination of
quantum channels [82, 90,113] and measurements [35, 114].

The unambiguous discrimination of two objects allows for three possible out-
comes of the discrimination. Let us consider the standard situation when we are
discriminating either measurements or channels. One of them is secretly chosen
and hidden in the black box with equal probabilities. After performing the protocol
of discrimination, we can either know which object was in the black box or we may
get an inconclusive answer. When we know which object was hidden in the black
box, we know it with certainty. Therefore, we cannot make a mistake and mix the
two objects. However, there is no such thing as a free lunch. There is a chance
that the discrimination protocol will not indicate which object was in the black
box; that is, we will obtain an inconclusive result. Nevertheless, when the chance
of getting the inconclusive result is sufficiently small, it may be worth taking this
risk, as thanks to that, we can be sure that we will not mix the quantum objects
in the black box with one another.

This chapter will focus on the unambiguous discrimination of quantum mea-
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surements and will be based on [35]. We will begin with introducing the general
entanglement-assisted scheme of unambiguous discrimination of quantum mea-
surements in Section 5.1. We will formulate how to calculate the probability of
successful discrimination and explain what it actually means in the unambiguous
setup.

Later, we will study the single-shot discrimination of measurements with rank-
one effects in Section 5.2. We will prove an upper bound on the probability of
successful unambiguous discrimination of general rank-one measurements. We will
also state similar bounds for the discrimination of von Neumann measurements
and SIC POVMs. On top of that, we will present a geometrical interpretation for
the probability of unambiguous discrimination of von Neumann measurements.

The following Section 5.3 will concern the special case of single-shot discrimina-
tion, that is, the discrimination without entanglement. We will assume that no
additional register can be used and calculate an upper bound on the probability of
successful unambiguous discrimination.

Is unambiguous discrimination of quantum measurements always possible? Or
maybe in some cases it does not make any sense to even try this scheme? We
will try to answer these questions in Section 5.4. We will state the conditions for
unambiguous discrimination of general quantum channels and measurements.

Finally, in Section 5.5, we will explore the problem of multiple-shot unambiguous
discrimination. We will introduce the parallel and adaptive discrimination schemes
and state the probability of unambiguous discrimination after N queries to the
black box in the parallel scheme. We will also see the geometrical interpretation
of this quantity for the case of von Neumann measurements. Eventually, we will
study whether the adaptive scheme can improve the discrimination.

5.1 Scheme of unambiguous discrimination

In this section, we will introduce the general scheme of unambiguous discrimination
of quantum measurements. We will focus on discrimination between two quantum
measurements P0 and P1. Assume that one of these measurements is hidden
in the black box and we want to discriminate them unambiguously using the
discrimination scheme depicted in Figure 5.1.

We prepare an input state |ψ〉 on both registers and perform the measurement
hidden in the black box on the first register. We know that in the black box there
was either the measurement P0, or P1. After applying one of these measurements,
we obtain a classical label on the first register. Basing on this label we prepare a
final measurement and apply it on the second register. This final measurement,
PF , has three effects, which are {Ω0,Ω1,Ω?}. When we obtain the label associated
with the effect Ω0, then we are sure that the channel in the black box was P0.
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P0/P1 •

PF 0 / 1 / ?

|ψ〉

Figure 5.1: Scheme of unambiguous discrimination of quantum measurements P0

and P1.

Analogously, if we obtain the label associated with the effect Ω1, then we are sure
that the channel in the black box was P1. Nevertheless, there is a third possibility
that the label will be associated with the effect Ω?. In such a case we do not know
which of the channels was hidden in the black box. This third option will be called
an inconclusive answer.

What do we mean when saying that unambiguous discrimination was successful?
In the above scheme, the probability of successful unambiguous discrimination
between quantum measurements P0 and P1 equals

pu(PF , ψ) =
1

2
tr (Ω0 (P0 ⊗ 1l) (ψ)) +

1

2
tr (Ω1 (P1 ⊗ 1l) (ψ)) . (5.1)

This probability depends on the choice of the input state ψ and final measurement
PF . The first part of the right hand side of the above formula corresponds to
the situation when in the black box there was P0 (with a priori probability equal
1/2), and the outcome of the final measurement was associated with the effect Ω0.
Similarly, the second part correspond to the case when the black box contained the
measurement P1 and the label of the final measurement was associated with the
effect Ω1.

The unambiguity condition states that whenever we make a decision which of
the measurements was in the black box, this decision is correct. Formally, this can
be written as

tr (Ω0 (P1 ⊗ 1l) (ψ)) = tr (Ω1 (P0 ⊗ 1l) (ψ)) = 0. (5.2)

Note that third effect, Ω?, appears neither in the probability of unambiguous
discrimination in Eq. (5.1) nor in the unambiguity condition in Eq. (5.2). Intuitively,
we say that the unambiguous discrimination was successful when we got the
conclusive result. In other words, in unambiguous discrimination we always need
to assume the unambiguity condition in Eq. (5.2) and we are interested in the
probability that the final measurement gives the label which is not associated with
the effect Ω?.

The strategy of unambiguous discrimination involves the choices of the input
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state and the final measurement. Recall the probability of unambiguous discrimi-
nation in Eq. (5.1). This probability does depend on the chosen input and final
measurement. However, we will often be interested in the optimized version of
such probability, which does not depend on the discrimination strategy. Thus we
introduce

pu := max
PF ,ψ

pu(PF , ψ). (5.3)

We will sometimes write pu(P0,P1) instead of pu to emphasize which measurements
are being discriminated.

5.2 Single-shot discrimination

In this section we will study the optimal probability of unambiguous discrimination
in the scheme described in Section 5.1. We will begin with stating a general theorem
concerning the discrimination of POVMs with rank-one effects. The presented
version of the theorem will be a generalization of the theorem proved in [35] for
unambiguous discrimination of von Neumann measurements. Later, we will present
two corollaries which give formulas for this probability in the cases of von Neumann
measurements and SIC POVMs.

Theorem 7 The optimal success probability of unambiguous discrimination be-
tween rank-one measurements P0 and P1 with effects {|xi〉〈xi|}mi=1 and {|yi〉〈yi|}mi=1,
respectively, is upper-bounded by

pu(P0,P1) ≤ 1− min
ρ∈D(X )

∑
i

|〈xi|ρ|yi〉|. (5.4)

Proof. Let us consider an input state |ψ〉 on the compound register. Let X be a
matrix satisfying |ψ〉 =

∑
i,j Xi,j|i〉|j〉.

We perform one of the channels, either P0 or P1, extended by the identity
channel on the state |ψ〉〈ψ|. As a result we obtain one of the states

(P0 ⊗ 1l) (|ψ〉〈ψ|) =
m∑
i=1

|i〉〈i| ⊗XT |xi〉〈xi|X,

(P1 ⊗ 1l) (|ψ〉〈ψ|) =
m∑
i=1

|i〉〈i| ⊗XT |yi〉〈yi|X.
(5.5)

As both output states have block-diagonal structure, we will restrict our atten-
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tion to considering measurements having block-diagonal structure of the form

Ω :=
m∑
i=1

|i〉〈i| ⊗ Ωi. (5.6)

If the obtained label was i, then the state of the auxiliary subsystem is either

|ai〉〈ai| = a−1
i X>(|xi〉〈xi|)>X, (5.7)

if the measurement P0 was performed, or it is

|bi〉〈bi| = b−1
i X>(|yi〉〈yi|)>X (5.8)

if the measurement P1 was performed. The scalars ai, bi are responsible for nor-
malization. If any of these scalars was equal zero, then the corresponding outcome
would not occur. Therefore, we will assume that ai > 0 and bi > 0. Utilizing
the fact that the obtained states |ai〉〈ai|, |bi〉〈bi| are pure, we can define the final
measurements as P(i)

F := {Ω(i)
0 ,Ω

(i)
1 ,M

(i)
? }, where

Ω
(i)
0 := γ

(i)
0 (1l− |bi〉〈bi|),

Ω
(i)
1 := γ

(i)
1 (1l− |ai〉〈ai|),

Ω
(i)
? := 1l− Ω

(i)
0 − Ω

(i)
1 ,

(5.9)

and γ(i)
0 , γ

(i)
1 guarantee the non-negativity of Ω

(i)
? .

The success probability in unambiguous discrimination of pure states |a〉, |b〉
with a priori probabilities η, 1− η is given by [115]

pusucc(a, b, η) =


1− η − (1− η)c2 for η < c2

1+c2

1− 2c
√
η(1− η) for c2

1+c2
≤ η ≤ 1

1+c2

1− (1− η)− ηc2 for 1
1+c2

< η,

(5.10)

where c = |〈a|b〉|. We will focus on the following upper bound

pusucc(a, b, η) ≤ 1− 2c
√
η(1− η). (5.11)

Let us define ρ = XX†. When the label i is obtained, the a priori probabilities
of obtaining the states |ai〉, |bi〉 are ηi = ai

ai+bi
, 1− ηi = bi

ai+bi
. The overlap between

|ai〉 and |bi〉 can be calculated as

ci = |〈ai|bi〉| =
|〈xi|XX>|yi〉|√

aibi
=
|〈xi|ρ|yi〉|√

aibi
. (5.12)
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Now we are in position to calculate the upper bound for the probability of successful
unambiguous discrimination when the label i was observed.

pusucc(ai, bi, ηi) ≤ 1− 2ci

√
aibi

ai + bi
= 1− 2|〈xi|ρ|yi〉|

ai + bi
. (5.13)

Finally, we calculate the bound of the overall success probability as

pu(P0,P1) = max
|ψ〉

∑
i

Pr(label = i)pusucc(ai, bi, ηi)

≤ max
ρ

∑
i

1

2
(ai + bi)

(
1− 2|〈xi|ρ|yi〉|

ai + bi

)

= max
ρ

(∑
i

1

2
(ai + bi)−

∑
i

|〈xi|ρ|yi〉|

)
= 1−min

ρ

∑
i

|〈xi|ρ|yi〉|.

(5.14)

Let us now consider two classes of measurements with rank-one effects, which
were also of special importance in the previous chapters. Theses classes are von
Neumann measurements and SIC POVMs. As for the von Neumann measurements,
similarly as in the symmetric discrimination, we can assume that one of the
measurements is in the canonical basis. Therefore, we can restrict our attention
to the problem of discrimination between P1l and PU , for some unitary matrix U .
To apply the expression for unambiguous discrimination stated in Theorem 7 for
the case of von Neumann measurements, we need to known their Kraus operators.
Fortunately, we can directly see that the Kraus operators of P1l are {|i〉〈i|}i while
the Kraus operators of PU are {U |i〉〈i|U †}i. Hence, we have the following corollary.

Corollary 6 The success probability of unambiguous discrimination between von
Neumann measurements P1l and PU is upper-bounded by

pu(P1l,PU) ≤ 1− min
ρ∈D(X )

∑
i

|〈i|ρU |i〉|. (5.15)

The bound in the above Corollary is tight. When P1l and PU are can be
discriminated perfectly, we can utilize Proposition 12 in Appendix A. In the case
when P1l and PU cannot be discriminated perfectly, then it follows from Lemma 5
in Appendix A.

Figure 5.2 represents a geometrical interpretation of the probability of un-
ambiguous discrimination between von Neumann measurements from the above
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Corollary. The notation used is the same as in Figure 3.4 in Section 3.3. The value
of the probability of unambiguous discrimination is denoted by pu, while λ1 and λd
denote a pair of the most distant eigenvalues of the optimized unitary matrix UE0

(see Eq. (3.15)).

0 λ1 = 1

λd

pu

Figure 5.2: Geometrical interpretation of the probability pu of unambiguous dis-
crimination between von Neumann measurements PU and P1l. λ1 and λd are the
most distant eigenvalues of the unitary matrix UE0 and the numerical range of
this matrix is contained in the gray area.

Now we proceed to unambiguous discrimination of SIC POVMs. Let P0 be a
SIC POVM with effects {|xi〉〈xi|}d

2

i=1 and let P1 has the effects {|yi〉〈yi|}d
2

i=1, where
|yi〉 = |xπ(i)〉 and π is a permutation of d2 numbers. The following Corollary states
the upper bound for the unambiguous discrimination depending of on the number
of fixed points of the permutation π.

Corollary 7 The success probability of unambiguous discrimination between SIC
POVMs P0 and P1 is upper-bounded by

pu(P0,P1) ≤ 1− 1

d3

(
(d2 − k)

1√
d+ 1

+ k

)
, (5.16)

where k is the number of fixed points of the permutation π. Moreover, when k = 0,
then

pu(P0,P1) ≤ 1− 1

d
√
d+ 1

. (5.17)
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Proof. Taking ρ = 1l
d2

we calculate

d2∑
i=1

|〈xi|ρ|yi〉| =
1

d2

d2∑
i=1

|〈xi|yi〉| =
1

d3

d2∑
i=1

|〈φi|φπ(i)〉|

=
1

d3

(
(d2 − k)

1√
d+ 1

+ k

)
,

(5.18)

where the last equality follows from the SIC condition in Eq. (3.16).

5.3 Discrimination without entanglement
In this section, we will consider the special case of the problem of unambiguous
discrimination of quantum measurements. We will assume that we cannot use
the additional register, thus this scheme does not allow for the assistance of
entanglement. We can only prepare an input state on a single register and apply the
measurement contained in the black box to this state. Fortunately, the measurement
gives a classical label, which can be used to decide which of the measurements
was in the black box. This scheme is depicted in Figure 5.3. The post-processing,
which, given the classical label from the black box measurement, allows us to make
a final decision is denoted by a trivial final measurement PF .

|ψ〉 P0/P1 i PF 0 / 1 / ?

Figure 5.3: Scheme of discrimination of quantum measurements without the
assistance of entanglement.

Our goal to is unambiguously discriminate measurements P0 and P1 without any
additional register. We prepare an input state |ψ〉 ∈ D(X ) and apply the measure-
ment in the black box. The probability of successful unambiguous discrimination
without the use of entanglement yields

p̃u(PF , ψ) =
1

2
tr (Ω0P0(ψ)) +

1

2
tr (Ω1P1(ψ)) . (5.19)

The unambiguity condition for the scheme without additional register can be
written as

tr (Ω0P1(ψ)) = tr (Ω1P0(ψ)) = 0. (5.20)

The optimized probability of unambiguous discrimination without the assistance of
entanglement is given by

p̃u := max
PF ,ψ

p̃u(PF , ψ). (5.21)
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The following theorem concerns the discrimination of von Neumann measure-
ments and states the optimal probability of their correct unambiguous discrimination
without the assistance of entanglement [35].

Theorem 8 The optimal success probability of unambiguous discrimination, with-
out the use of entanglement, between von Neumann measurements P1l and PU , is
given by

p̃u =
1

2
max

A,B∈{1,...,d}:A∩B=∅

∥∥∥∥∥PS
(∑
i∈A

|i〉〈i|+
∑
j∈B

U |j〉〈j|U †
)
PS

∥∥∥∥∥ , (5.22)

where ‖·‖ is the operator norm and PS in the orthogonal projection onto

S = span {U |i〉}i∈{1,...,d}\A ∩ span {|j〉}j∈{1,...,d}\B . (5.23)

Proof. Assume we have a fixed input state ψ := |ψ〉〈ψ|. We will calculate the
probability of unambiguous discrimination using the notation ∆ for the dephasing
channel. We will use the notation Ω1l (ΩU) to denote a measurement effects which
corresponds to the situation that in the black box was P1l (PU). We calculate

p̃u(PF , ψ) =
1

2
tr (Ω1lP1l(ψ)) +

1

2
tr (ΩUPU(ψ))

=
1

2
tr

(
Ω1l

∑
i

|i〉〈i|ψ|i〉〈i|

)
+

1

2
tr

(
ΩU

∑
j

|j〉〈j|U †ψU |j〉〈j|

)

=
1

2

∑
i

tr (|i〉〈i|Ω1l|i〉〈i|ψ) +
1

2

∑
j

tr
(
U |j〉〈j|ΩU |j〉〈j|U †ψ

)
=

1

2
tr

(∑
i

|i〉〈i|Ω1l|i〉〈i|ψ

)
+

1

2
tr

(
U
∑
j

|j〉〈j|ΩU |j〉〈j|U †ψ

)

=
1

2
tr (∆ (Ω1l)ψ) +

1

2
tr
(
U∆ (ΩU)U †ψ

)
.

(5.24)

From the unambiguity condition we have

tr (Ω1lPU(ψ)) = tr

(
Ω1l

∑
j

|j〉〈j|U †ψU |j〉〈j|

)

= tr

(∑
j

U |j〉〈j|Ω1l|j〉〈j|U †ψ

)
= tr

(
U∆ (Ω1l)U

†ψ
)

= 0

(5.25)

83



and

tr (ΩUP1l(ψ)) = tr

(
ΩU

∑
i

|i〉〈i|ψ|i〉〈i|

)
= tr

(∑
i

|i〉〈i|ΩU |i〉〈i|ψ

)
= tr (∆ (ΩU)ψ) = 0.

(5.26)

In other words, ψ ⊥ supp
(
U∆ (Ω1l)U

†) and ψ ⊥ supp (∆ (ΩU)). From the above
we can see that we can restrict our attention to effects Ω1l,ΩU which are diagonal.
Moreover, the optimal effects can be chosen as projectors onto disjoint subsets
A,B of {1, . . . , d}. Hence

p̃u(PF , ψ) =
1

2
tr (∆ (Ω1l)ψ) +

1

2
tr
(
U∆ (ΩU)U †ψ

)
=

1

2
tr (Ω1lψ) +

1

2
tr
(
UΩUU

†ψ
)

=
1

2
tr

(∑
i∈A

|i〉〈i|ψ

)
+

1

2
tr

(
U

(∑
j∈B

|j〉〈j|

)
U †ψ

)

=
1

2
tr

((∑
i∈A

|i〉〈i|+
∑
j∈B

U |j〉〈j|U †
)
ψ

)
.

(5.27)

When the disjoint subsets A and B are fixed, the maximum over input states
ψ is, by linearity, equal to

∥∥∥PS (∑i∈A |i〉〈i|+
∑

j∈B U |j〉〈j|U †
)
PS
∥∥∥, where ‖·‖ is

the operator norm. The orthogonal projectors PS assure that the unambiguity
condition is fulfilled. To obtain the probability of unambiguous discrimination one
needs to optimize over disjoint subsets A,B of {1, . . . , d}.

5.4 Conditions for unambiguous discrimination
Similarly as in the symmetric discrimination discussed in the previous chapter, not
all quantum measurements can be discriminated unambiguously. Sometimes we
may need to use the black box many times, but it still may not be sufficient. The
general conditions when quantum channels can be discriminated unambiguously
with nonzero probability are formulated by the authors of [82]. We will state, as a
proposition, a simplified version of these condition for the discrimination between
two quantum channels. This proposition utilizes the notion of support of quantum
channels, which was introduced in Eq. (2.61).

Proposition 9 ( [82]) If the quantum channels {Φ0,Φ1} satisfy supp(Φ0) 6⊆
supp(Φ1) and supp(Φ1) 6⊆ supp(Φ0), then they can be unambiguously discriminated
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(with nonzero probability) by 2 uses. Otherwise, they cannot be unambiguously
discriminated by any finite number of uses.

In the above proposition we do not specify the exact scheme of discrimination,
but we only say whether unambiguous discrimination is possible or not. The detailed
descriptions of the parallel and adaptive schemes for unambiguous discrimination
will be presented in the following section.

In this chapter we focus on unambiguous discrimination of measurements with
rank-one effects. Recall that for the measurement P with effects {|xi〉〈xi|}i, its
Kraus operators have the form {|i〉〈xi|}i. Therefore, we can draw a simple conclusion
from the above Proposition, when quantum measurements with rank-one effects
can be unambiguously discriminated with nonzero probability. This is formulated
as the following corollary.

Corollary 8 Let P0,P1 be quantum measurements with effects {|xi〉〈xi|}i and
{|yi〉〈yi|}i respectively. If there exists i such that |xi〉 and |yi〉 are linearly indepen-
dent, then P0 and P1 can be unambiguously discriminated (with nonzero probability)
by 2 uses. Otherwise, they cannot be unambiguously discriminated by any finite
number of uses.

5.5 Multiple-shot unambiguous discrimination
Consider the scheme when the black box containing the measurement can be used
N times in parallel. This scenario is depicted in Figure 5.4. The input state |ψ〉
is prepared on the compound register and we apply the black box measurement
on first N registers. Therefore we obtain N classical labels and perform the
final measurement on the remaining register. Basing on the label of the final
measurement we make a decision whether in the black box there was either P0, P1,
or the inconclusive answer.

Therefore, in the scheme of parallel unambiguous discrimination we actually
need to discriminate channels P0 ⊗ . . . ⊗ P0 and P1 ⊗ . . . ⊗ P1 extended by the
identity channel. In such case, the probability of unambiguous discrimination after
N queries yields

p(N)
u := max

PF ,ψ
p(N)
u (PF , ψ). (5.28)

where

p(N)
u (PF , ψ) =

1

2
tr
(
Ω0

(
Φ⊗N0 ⊗ 1l

)
(ψ)
)

+
1

2
tr
(
Ω1

(
Φ⊗N1 ⊗ 1l

)
(ψ)
)
. (5.29)

To obtain the upper bound on the success probability of unambiguous discrimi-
nation we can apply Theorem 7 for these channels. The resulting bound is stated
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|ψ〉

Figure 5.4: Scheme of unambiguous parallel discrimination of quantum measure-
ments P0 and P1.

as the following Remark.

Remark 1 The optimal success probability of unambiguous discrimination after
N queries in the parallel scheme between rank-one measurements P0 and P1 with
effects {|xi〉〈xi|}mi=1 and {|yi〉〈yi|}mi=1, respectively, is upper-bounded by

p(N)
u (P0,P1) ≤ 1− min

ρ∈D(X⊗N )

∑
i1,...,iN

|〈xi1 · · ·xiN |ρ|yi1 · · · yiN 〉| . (5.30)

A similar bound in the case of von Neumann measurements is presented as the
following Remark.

Remark 2 The optimal success probability of unambiguous discrimination after N
queries in the parallel scheme between von Neumann measurements P1l and PU is

p(N)
u (P1l⊗N ,PU⊗N ) = 1− min

ρ∈D(X⊗N )

∑
i

|〈i|ρU⊗N |i〉|. (5.31)

Geometrical interpretation of the above Remark is presented in Figure 5.5.
The left figure represents the case of the first query to the black box, where

we discriminate between von Neumann measurements PU and P1l. The pair of the
most distant eigenvalues of the optimized matrix UE0 (see Eq. (3.15)) are denoted
by λ1 = 1 and λd, while the angle between them is denoted by Υ. The probability
of unambiguous discrimination in this case corresponds to the distance from the
point that is in the middle between λ1 and λd to the unit circle. As we can see in
the left picture, pu is pretty small. Thus, to improve the discrimination we can use
the black box two times in parallel. This is presented in the middle figure. Now,
the probability of unambiguous discrimination p(2)

u is significantly bigger, but still
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0 λ1

λd

Υ

pu

0 λ1

λ2d

2Υ

p
(2)
u

0 λ1

λ3d

3Υ

p
(3)
u = 1

Figure 5.5: Geometrical interpretation of unambiguous discrimination of von
Neumann measurements in the parallel scheme after first (left figure), second
(middle figure) and third (right query) queries. The numerical range in each
picture is contained in the gray area. pu denoted the probability of unambiguous
discrimination, λ1 and λd denote the most distant eigenvalues of the unitary matrix
and Υ stands for Υ(U).

smaller than one. Finally, after the third query to the black box, the numerical
range contains zero. Thus, we obtain unambiguous discrimination, that is p(3)

u = 1.
This is depicted in the right figure.

Adaptive discrimination scheme allows us to perform processing between subse-
quent queries to the black box. We can use the obtained classical label to prepare
an input for the next query. The scheme of adaptive unambiguous discrimination
is depicted in Figure 5.6. In some cases, adaptive scheme may indeed lead to
improvement in the discrimination, like it was in Section 4.5 for symmetric dis-
crimination of SIC POVMs. However in the case of unambiguous discrimination
of von Neumann measurements the use of adaptive scheme does not improve the
discrimination.

Theorem 9 Parallel scheme is optimal for unambiguous discrimination of von
Neumann measurements.

Proof. Without loss of generality we can assume that there were N queries to the
black box and we discriminate between von Neumann measurements PU and P1l.
Moreover, we will assume that for the matrix U it holds that

Υ(U) = Θ(U), (5.32)
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|ψ〉

Figure 5.6: Scheme of adaptive unambiguous discrimination of quantum measure-
ments P0 and P1.

where Υ(U) was defined in Eq. (3.15).

Let |ψ〉 be the input state. Let us denote

|xi〉 = p
−1/2
i (〈i| ⊗ 1lN+1)A1l|ψA,B〉

|yi〉 = q
−1/2
i (〈i| ⊗ 1lN+1)AU |ψA,B〉,

(5.33)

where pi and qi are responsible for normalization and AU and A1l are defined as

AU =
(
1lL(X1,...,XN−1) ⊗ U ⊗ 1lL(XN+1)

)
×

 ∑
i1,...,iN−1

|i1 · · · iN−1〉〈i1 · · · iN−1| ⊗ V (N−1)
i1,...,iN−1


×
(
1lL(X1,...,XN−2) ⊗ U ⊗ 1lL(XN ,XN+1)

)
×

 ∑
i1,...,iN−2

|i1 · · · iN−2〉〈i1 · · · iN−2| ⊗ V (N−2)
i1,...,iN−2


. . .

×
(
1lL(X1) ⊗ U ⊗ 1lL(X3,...,XN+1)

)
×

(∑
i1

|i1〉〈i1| ⊗ V (1)
i1

)
×
(
U ⊗ 1lL(X2,...,XN+1)

)
.

(5.34)

Repeating the calculation from the single-shot scenario from the proof of Theorem 7
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we can upper-bound the probability of successful discrimination as follows

pu(ΨU ,Ψ1l) ≤ 1−min
|ψ〉

∑
i

∣∣∣〈ψ|A†1l (|i〉〈i| ⊗ 1lN+1)AU |ψ〉
∣∣∣

≤ 1−min
|ψ〉

∣∣∣∣∣∑
i

〈ψ|A†1l (|i〉〈i| ⊗ 1lN+1)AU |ψ〉

∣∣∣∣∣
= 1−min

|ψ〉

∣∣∣〈ψ|A†1lAU |ψ〉∣∣∣ .
(5.35)

From the work [100] we know that there exists a state |φ〉 such that

|〈ψ|A†1lAU |ψ〉| ≥ |〈φ|U
⊗N |φ〉| (5.36)

hods for all |ψ〉. Moreover, using optimality of U and Lemma 8, the state |φ〉 can
be chosen to satisfy |〈φ|U⊗N |φ〉| = minρ

∑
i |〈i|ρU⊗N |i〉|. This leads to the desired

inequality
pu(ΨU ,Ψ1l) ≤ 1−min

ρ

∑
i

|〈i|ρU⊗N |i〉|. (5.37)
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Chapter 6

Asymmetric discrimination

In the previous chapters, we studied the discrimination between two quantum
objects and wanted to know which of them was hidden in the black box. We
either tried to minimize the chance of making a wrong decision in symmetric
discrimination or to minimize the chance of getting the inconclusive result in
unambiguous discrimination. Whenever we did not succeed in the discrimination
process, we were saying that we failed and did not worry about what kind of
mistake we had made.

In many real-life situations, objects which at first sight look similar have totally
different values and prices. When discriminating such objects, it is a huge difference
in what kind of mistake we make. When we hope to be given a cheap object, and by
accident, we are given the expensive one, it would be a nice surprise. On the other
hand, when we hope to be given the expensive object, and we are given the cheap
one, that would be a bitter disappointment. This is the key idea of asymmetric
discrimination. We differentiate between two types of errors and do not treat them
equally. For example, we can assume some bounds on one type of error and study
how small can the other type of error be. We can also study which of these types
of errors can be equal to zero.

This approach to the discrimination problem is based on the statistical hypothe-
sis testing. One of the quantum objects will be associated with the null hypothesis
H0 while the other object will be associated with the alternative hypothesis H1.
Intuitively, we can think that the object associated with the null hypothesis is the
one we hope to be given. Using the language of black boxes, the null hypothesis
states that in the black box, there is the object we hope to find there.

There may be many reasons why we hope that in the black box there is some
specific object, and not the other one. When performing quantum computation,
we apply quantum gates and measurements. The usefulness of the results of such
computation depends on the quality of these gates and measurements. Hence, it is a
legit question of how to verify if the given quantum gate or measurement acts exactly
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the way it should. Such a verification process is known as certification [116,117].
The term certification in general refers to verifying if some device works properly,

that is, in a way we are promised it does. We will focus on the certification scheme
which is based on binary hypothesis testing. The term binary in this context
emphasizes that both null and alternative hypotheses are single-element sets. This
can also be seen as certification of one quantum object against some other one. In
the literature, the term certification may refer to a more general scheme [116,117],
e.g. when the alternative hypothesis corresponds to the set of objects, and this set
can be infinite. Some of the results presented in this chapter were, in fact, originally
proved also for this more general scheme, but in this dissertation, we will restrict
our attention to the problem of binary certification. Therefore, in this chapter we
will use the terms certification and asymmetric discrimination interchangeably.

This chapter will be based on the works [37] and [36]. We will begin by
describing the problem of quantum hypothesis testing and introducing the schemes
of certification for general quantum channels in Section 6.1. We will formulate the
probabilities of making the false positive and false negative errors in single-shot
and parallel discrimination schemes. In Section 6.2, we will prove a necessary
and sufficient condition when a quantum channel can be certified against some
other channel [37]. Similar conditions for the case of certification of quantum
measurements will be presented in Section 6.3. Later, in Section 6.4 we will
focus on the certification of SIC POVMs. Finally, certification of von Neumann
measurements, covering the results from [36], will be explored in Section 6.5.

6.1 Quantum hypothesis testing

Let us now focus on the general problem of quantum hypothesis testing. We want
to verify whether we were given channel the Φ0 ∈ C(X ,Y) or it was some other
channel Φ1 ∈ C(X ,Y). We associate the channel Φ0 with the H0 hypothesis. If
after the certification procedure we make a decision that we were given the channel
Φ0, then we accept the hypothesis H0. Otherwise, we reject the null hypothesis
and claim that the given channel was Φ1, which is associated to the alternative
hypothesis, H1. Hence, our hypotheses can be succinctly written as

H0 : Φ0;

H1 : Φ1.
(6.1)

While studying statistical hypothesis testing, we consider two types of errors.
The type I error, known also as false positive error, happens when we reject the
null hypothesis when in fact it was true. The converse situation, that is accepting
the null hypothesis when the alternative one was true, is known as type II error or
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false negative.

Single-shot certification

We will focus on the general, entanglement-assisted scheme. Similarly, as it was
in the case of discrimination studied in the previous chapters, we can prepare a
quantum state |ψ〉 on the compound space X ⊗ Z and apply the certified channel
(either Φ0 or Φ1) on system X . Hence, the possible output states are either

ρ
|ψ〉
0 :=

(
Φ0 ⊗ 1lL(Z)

)
(|ψ〉〈ψ|) (6.2)

or
ρ
|ψ〉
1 :=

(
Φ1 ⊗ 1lL(Z)

)
(|ψ〉〈ψ|) (6.3)

depending which of the channels was applied.
Having the output state either ρ|ψ〉0 or ρ|ψ〉1 , we measure this state by the

measurement PF = {Ω, 1l − Ω}. If the measurement outcome corresponds to
the effect Ω, then we accept the hypothesis H0. Otherwise, that is when the
measurement outcome corresponds to effect 1l− Ω, we reject the null hypothesis
H0 and accept the hypothesis H1.

When the input state |ψ〉, and measurement effect Ω are fixed, then the proba-
bility of making the false positive error yields

α(ψ,Ω) := Tr
(

(1l− Ω) ρ
|ψ〉
0

)
= 1− Tr

(
Ωρ
|ψ〉
0

)
, (6.4)

and the probability of making the false negative error equals

β(ψ,Ω) := Tr
(

Ωρ
|ψ〉
1

)
. (6.5)

The situation of special interest happens when we can be sure that we accept
the null hypothesis only if it is indeed true. Therefore, we introduce the formal
definition when a quantum channel can be ε-certified against some other channel.

Definition 4 Let ε > 0. Quantum channel Φ0 can be ε-certified against channel Φ1

if there exist an input state |ψ〉 and a measurement effect Ω such that β(ψ,Ω) = 0
and α(ψ,Ω) ≤ ε.

We will often use the notation for optimized probabilities of false positive error

αδ := min
ψ,Ω
{α(ψ,Ω) : β(ψ,Ω) ≤ δ} (6.6)
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and we will write

α := α0 = min
ψ,Ω
{α(ψ,Ω) : β(ψ,Ω) = 0} . (6.7)

Parallel certification

The above scheme of certification can be directly extended to the parallel scheme.
Assume that the certified channel can be used N times in the parallel setup. In
other words, this time instead of certifying channel Φ0 against Φ1, we will be
certifying channel Φ⊗N0 against the channel Φ⊗N1 . As we will consider the general
entanglement-assisted protocol, let |ψ〉 ∈ X⊗N ⊗Z be the input state. Hence, if
the certified channel was Φ0, then as the output state we have

ρ
N,|ψ〉
0 :=

(
Φ⊗N0 ⊗ 1lL(Z)

)
(|ψ〉〈ψ|); (6.8)

and analogously, if the certified channel was Φ1, when we have the output state

ρ
N,|ψ〉
1 :=

(
Φ⊗N1 ⊗ 1lL(Z)

)
(|ψ〉〈ψ|). (6.9)

Now, the output state is in the larger space Y⊗N ⊗Z, hence we need to prepare
a final measurement {Ω, 1l− Ω}, where Ω ∈ Pos

(
Y⊗N ⊗Z

)
.

When the input state |ψ〉 and measurement effect Ω are fixed, then the proba-
bility of making the false positive error after N queries in the parallel scheme is
given by

αN,P(ψ,Ω) := Tr
(

(1l− Ω) ρ
N,|ψ〉
0

)
. (6.10)

The probability of making the false negative error yields

βN,P(ψ,Ω) := Tr
(

Ωρ
N,|ψ〉
1

)
. (6.11)

The resemblance between the notation used for the single-shot case and the
parallel one is not incidental. In fact, when N = 1, then we recover the single-shot
case, that is ρ1,|ψ〉

0 = ρ
|ψ〉
0 and ρ

1,|ψ〉
1 = ρ

|ψ〉
1 , as well as α1,P(ψ,Ω) = α(ψ,Ω) and

β1,P(ψ,Ω) = β(ψ,Ω).
So far, the probabilities of making the false positive and false negative errors

were introduced only for the case when the input state |ψ〉 and measurement effect
Ω were fixed. However, in the task of certification we are allowed to prepare any
input state as well as any final measurement, that is we can optimize over both.
Therefore, let us introduce the optimized probability of making the false positive
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error for parallel scheme as

αN,Pδ := min
ψ,Ω

{
αN,P(ψ,Ω) : βN,P(ψ,Ω) ≤ δ

}
(6.12)

and moreover, we introduce the notation

αN,P := αN,P0 . (6.13)

Finally, we will introduce the definition when we say that a quantum channel
can be certified against some other channel.

Definition 5 Quantum channel Φ0 can be certified in the parallel scheme against
channel Φ1, if for every ε > 0 there exist a natural number N , an input state |ψ〉
and a measurement effect Ω such that βN,P(ψ,Ω) = 0 and αN,P(ψ,Ω) ≤ ε.

6.2 Condition for certification of quantum chan-
nels

This section will be devoted to proving a theorem which gives necessary and
sufficient condition when arbitrary quantum channel can be certified against some
other quantum channel in a finite number of queries in the parallel scheme. This
theorem was originally proved in [37].

Theorem 10 Quantum channel Φ0 can be certified against quantum channel Φ1

in the parallel scheme in and inly if supp(Φ0) 6⊆ supp(Φ1).

Before presenting the proof, we will introduce and prove two technical lemmas.

Lemma 2 Let {|at〉}t and {|bt〉}t be two orthonormal bases and |ψ〉 :=
∑

t λt|at〉|bt〉
where λt > 0 for every t. Let also ρ|ψ〉0 and ρ|ψ〉1 be as introduced in Eq. (6.2),(6.3).
If supp(Φ0) 6⊆ supp(Φ1), then supp

(
ρ
|ψ〉
0

)
6⊆ supp

(
ρ
|ψ〉
1

)
.

Proof of Lemma 2. Suppose by contradiction that supp
(
ρ
|ψ〉
0

)
⊆ supp

(
ρ
|ψ〉
1

)
,

that is
span {(Ei ⊗ 1l)|ψ〉}i ⊆ span {(Fj ⊗ 1l)|ψ〉}j . (6.14)

Hence, for every i
(Ei ⊗ 1l)|ψ〉 =

∑
j

βj(Fj ⊗ 1l)|ψ〉, (6.15)
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where βj are not all equal to zero. As |ψ〉 :=
∑

t λt|at〉|bt〉, then we have

(Ei ⊗ 1l)|ψ〉 =
∑
t

λt (Ei|at〉 ⊗ |bt〉) ;∑
j

βj(Fj ⊗ 1l)|ψ〉 =
∑
t

λt
∑
j

βj (Fj|at〉 ⊗ |bt〉) .
(6.16)

As {|bt〉}t is an orthonormal basis, then for every t

Ei|at〉 =
∑
j

βjFj|at〉, (6.17)

and hence
Ei =

∑
j

βjFj. (6.18)

Therefore, span{Ei}i ⊆ span{Fj}j, which implies supp(Φ0) ⊆ supp(Φ1).

Lemma 3 With the notation as above, if there exists a natural number N and an
input state |ψ〉 such that supp

(
ρ
N,|ψ〉
0

)
6⊆ supp

(
ρ
N,|ψ〉
1

)
, then supp(Φ0) 6⊆ supp(Φ1).

Proof of Lemma 3. Assume by contradiction that supp(Φ0) ⊆ supp(Φ1), that
is span {Ei}i ⊆ span {Fj}j. Hence it also holds that

span {Ei1 ⊗ . . .⊗ EiN}i1,...,iN ⊆ span {Fj1 ⊗ . . .⊗ FjN}j1,...,jN . (6.19)

Thus, for every i1, . . . , iN we have that

Ei1 ⊗ . . .⊗ EiN =
∑

j1,...,jN

βj1,...,jNFj1 ⊗ . . .⊗ FjN , (6.20)

where not all βj1,...,jN are equal to zero. Therefore, for every i1, . . . , iN it also holds
that

((Ei1 ⊗ . . .⊗ EiN )⊗ 1l) |ψ〉 =

(( ∑
j1,...,jN

βj1,...,jNFj1 ⊗ . . .⊗ FjN

)
⊗ 1l

)
|ψ〉

=
∑

j1,...,jN

βj1,...,jN ((Fj1 ⊗ . . .⊗ FjN )⊗ 1l) |ψ〉.
(6.21)

This implies that

span {((Ei1 ⊗ . . .⊗ EiN )⊗ 1l) |ψ〉}i1,...,iN
⊆ span {((Fj1 ⊗ . . .⊗ FjN )⊗ 1l) |ψ〉}j1,...,jN

(6.22)
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which contradicts with the assumption. Therefore, span {Ei}i 6⊆ span {Fj}j, and
eventually supp(Φ0) 6⊆ supp(Φ1).

Now we are in position to present the proof of Theorem 10.

Proof of Theorem 10. (⇐= ) Let supp(Φ0) 6⊆ supp(Φ1). From Lemma 2 this
implies supp

(
ρ
|ψ〉
0

)
6⊆ supp

(
ρ
|ψ〉
1

)
, where the input state is |ψ〉 =

∑
t λt|at〉|bt〉.

Hence, we can always find a state |φ〉 for which

|φ〉 6⊥ supp
(
ρ
|ψ〉
0

)
and |φ〉 ⊥ supp

(
ρ
|ψ〉
1

)
, (6.23)

and therefore
〈φ|ρ|ψ〉0 |φ〉 > 0 and 〈φ|ρ|ψ〉1 |φ〉 = 0. (6.24)

Now we consider the certification scheme by taking the measurement with effects
{Ω, 1l−Ω}. Without loss of generality we can assume that Ω := |φ〉〈φ| is a rank-one
operator. Therefore

tr
(

Ωρ
|ψ〉
0

)
= 〈φ|ρ|ψ〉0 |φ〉 > 0, (6.25)

and we calculate

β (ψ,Ω) = tr
(

Ωρ
|ψ〉
1

)
= 〈φ|ρ|ψ〉1 |φ〉 = 0;

α (ψ,Ω) = tr
(

(1l− Ω)ρ
|ψ〉
0

)
= 1− 〈φ|ρ|ψ〉0 |φ〉 < 1.

(6.26)

Hence, after sufficiently many uses, N , of the certified channel in parallel

(actually when N ≥ d log ε
logα
e) we obtain that tr

(
(1l− Ω)⊗N

(
ρ
|ψ〉
0

)⊗N)
≤ ε for any

positive ε.Therefore, after N queries we will be able to exclude the false negative
error.

( =⇒ ) Assume that Φ0 and Φ1 can be certified in the parallel scenario. This
means that there exist a natural number N , an input state |ψ〉 and a positive
operator (measurement effect) Ω0 on the composite system such that

αN,P (ψ,Ω) = 1− tr
(
Ω
(
Φ⊗N0 ⊗ 1l

)
(|ψ〉〈ψ|)

)
≤ ε < 1;

βN,P (ψ,Ω) = tr
(
Ω
(
Φ⊗N1 ⊗ 1l

)
(|ψ〉〈ψ|)

)
= 0.

(6.27)

Therefore tr
(
Ω
(
Φ⊗N0 ⊗ 1l

)
(|ψ〉〈ψ|)

)
> 0 and thus

Ω0 6⊥ supp
((

Φ⊗N0 ⊗ 1l
)

(|ψ〉〈ψ|)
)

= span {(Ei1 ⊗ . . .⊗ EiN ⊗ 1l) |ψ〉}i1,...iN ;

Ω0 ⊥ supp
((

Φ⊗N1 ⊗ 1l
)

(|ψ〉〈ψ|)
)

= span {(Fj1 ⊗ . . .⊗ FjN ⊗ 1l) |ψ〉}j1,...jN .
(6.28)
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Hence

span {(Ei1 ⊗ . . .⊗ EiN ⊗ 1l) |ψ〉}i1,...iN
6⊆ span {(Fj1 ⊗ . . .⊗ FjN ⊗ 1l) |ψ〉}j1,...jN .

(6.29)

The reminder of the proof follows directly from Lemma 3.

From the above proof we have the following corollary which states what is the
minimal number of queries needed to exclude false negative error.

Corollary 9 The number of steps needed for parallel certification is bounded by

Nε ≥
⌈

log ε

logα

⌉
, (6.30)

where α is the upper bound on probability of making the false positive error in
single-shot certification and ε is the upper bound on the probability of making the
false positive error.

6.3 Conditions for certification of quantum mea-
surements

In the previous section we proved a condition when arbitrary quantum channels
can be certified in the parallel scheme. This condition was expressed in terms of
Kraus operators of the given channels. In this section we will consider asymmetric
discrimination of quantum measurements, and formulate conditions when they can
be certified. Let us first focus on the most general class of quantum measurements.

Corollary 10 Let P0 and P1 be quantum measurements with effects {Mi}mi=1 and
{Ni}mi=1, respectively. Then, P0 can be certified against P1 in the parallel scheme
if and only if there exists an index i, such that a pair of effects Mi, Ni satisfy
supp(Mi) 6⊆ supp(Ni).

Proof. Let

Mi =
∑
ki

piki |x
i
ki
〉〈xiki |

Ni =
∑
li

qili |x
i
li
〉〈xili |

(6.31)
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be the spectral decompositions of Mi and Ni respectively (where piki , q
i
li
> 0 for

every ki, li). Then

P0(ρ) =
∑
i

|i〉〈i|tr(ρMi) =
∑
i

∑
ki

piki |i〉〈x
i
ki
|ρ|xiki〉〈i| (6.32)

and hence the Kraus operators of P0 are
{√

piki |i〉〈x
i
ki
|
}
i,ki

. Analogously,

P1(ρ) =
∑
i

|i〉〈i|tr(ρNi) =
∑
i

∑
li

qili |i〉〈y
i
li
|ρ|yili〉〈i| (6.33)

and hence the Kraus operators of P1 are
{√

qili |i〉〈y
i
li
|
}
i,li
.

Therefore from Theorem 10 we have that P0 can be certified against P1 in the
parallel scheme if and only if

span
{√

piki |i〉〈x
i
ki
|
}
i,ki
6⊆ span

{√
qili |i〉〈y

i
li
|
}
i,li
, (6.34)

that is when there exists a pair of effects Mi, Ni for which supp(Mi) 6⊆ supp(Ni).

From the corollary concerning general quantum measurements we can formulate
even simpler condition when measurements with rank-one effects can be certified
in the parallel scheme.

Corollary 11 Let P0 and P1 be quantum measurements with effects {pi|xi〉〈xi|}mi=1

and {qi|yi〉〈yi|}mi=1 for pi, qi ∈ (0, 1], respectively. Then, P0 can be certified against
P1 in the parallel scheme if and only if there exists an index i, such that a pair of
vectors |xi〉, |yi〉 is linearly independent.

From the above corollary we can draw a conclusion when von Neumann mea-
surements can be certified.

Corollary 12 Von Neumann measurement PU can be certified against von Neu-
mann measurement PV if and only if U 6= V .

6.4 Certification of SIC POVMs
In this section, we will study certification of SIC POVMs of arbitrary dimension.
Although it is an open question whether SIC POVMs exist in every dimension [62],
in this section we will implicitly assume that they do exist. The following corollary,
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which is a direct conclusion from Corollary 11, states when SIC POVMs can be
certified.

Corollary 13 SIC POVM P0 can be certified against SIC POVM P1 if and only
if P0 6= P1.

Now, we will focus on the probability of making the false positive error when the
false negative error cannot occur. We will present the results proved in [37]. First,
the bound on the probability of making the false positive error for the single-shot
case will be stated as Proposition 10. The bound for the parallel case will be
formulated as Proposition 11.

Proposition 10 Let P0 = {1
d
|φ1〉〈φ1|, . . . , 1

d
|φd2〉〈φd2|} and P1 = {1

d
|ψ1〉〈ψ1|, . . . ,

1
d
|ψd2〉〈ψd2|} be SIC POVMs, where |ψi〉 = |φπ(i)〉 for every i = 1, . . . , d2 and π is a

permutation of d2 elements with k fixed points. Assuming that the false negative
error cannot occur, the probability of the obtaining the false positive error is upper
bounded as follows

α ≤ d+ k

d2 + d
. (6.35)

Proof. To calculate the upper bound on α, we will calculate α(ψ,Ω) for fixed
input state ψ and final measurement Ω. As the input state we take the maximally
entangled state |ψ〉 := 1√

d
|1l〉〉. If the measurement was P0, then the output state is

ρ
|ψ〉
0 = (P0 ⊗ 1l) (|ψ〉〈ψ|) =

d2∑
i=1

|i〉〈i| ⊗ 1

d2
(|φi〉〈φi|)>, (6.36)

and similarly, if the measurement was P1, then the output state can be expressed
as

ρ
|ψ〉
1 =

d2∑
i=1

|i〉〈i| ⊗ 1

d2
(|φπ(i)〉〈φπ(i)|)>. (6.37)

Both output states have block-diagonal structure. Hence, without loss of generality
we can restrict our attention to final measurements having block-diagonal structure,
that is

Ω :=
d2∑
i=1

|i〉〈i| ⊗ Ω>i . (6.38)

We are considering the situation when the false negative error cannot occur.
To assure this condition, we need to make sure that Ωi ⊥ |φπ(i)〉〈φπ(i)| for every
i = 1, . . . , d2. Therefore, we can take Ωi := 1l− |φπ(i)〉〈φπ(i)| for every i = 1, . . . , d2.
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Having the input state and final measurement fixed, we will calculate the
probability of obtaining the false positive error α(ψ,Ω) = 1−Tr

(
Ωρ
|ψ〉
0

)
. First we

calculate

tr
(

Ωρ
|ψ〉
0

)
= tr

((
d2∑
i=1

|i〉〈i| ⊗
(
1l− |φπ(i)〉〈φπ(i)|

)>)( d2∑
j=1

|j〉〈j| ⊗ 1

d2
(|φj〉〈φj|)>

))

=
1

d2
tr

(
d2∑
i=1

|i〉〈i| ⊗
(
1l− |φπ(i)〉〈φπ(i)|

)>
(|φi〉〈φi|)>

)

=
1

d2

d2∑
i=1

〈φi|
(
1l− |φπ(i)〉〈φπ(i)|

)
|φi〉 =

1

d2

d2∑
i=1

(
1− |〈φi|φπ(i)〉|2

)
=

1

d2

(
d2 − k

) (
1− |〈φi|φπ(i)〉|2

)
=

1

d2

(
d2 − k

)(
1− 1

d+ 1

)
=
d2 − k
d2 + d

,

(6.39)

where k is the number of fixed points of the permutation π. Eventually, we can
write the bound as

α ≤ α (ψ,Ω) = 1− tr(Ωρ
|ψ〉
0 ) =

d+ k

d2 + d
. (6.40)

Note that when the permutation π does not have fixed points, then k = 0,
and the bound from the above proposition simplifies to α ≤ 1

d+1
. Similarly, if the

permutation π has exactly one fixed point, then the above bound yields α ≤ 1
d
.

The above Proposition considered the certification of SIC POVMs in the single-
shot scenario. In the remaining part of this section we will focus on the parallel
certification scheme. The following proposition provides an upper bound on the
probability of obtaining false positive error (when false negative error cannot occur)
after N queries in parallel.

Proposition 11 Let P0 = {1
d
|φ1〉〈φ1|, . . . , 1

d
|φd2〉〈φd2|} and P0 = {1

d
|ψ1〉〈ψ1|, . . . ,

1
d
|ψd2〉〈ψd2|} be SIC POVMs, where |ψi〉 = |φπ(i)〉 for every i = 1, . . . , d2 and π is a

permutation of d2 elements with k fixed points. Assuming that the false negative
error cannot occur, the probability of the obtaining the false positive error after N
queries in parallel is upper bounded as follows

αN,P ≤
(
d+ k

d2 + d

)N
. (6.41)
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Proof. This proof will be similar as the proof of Proposition 10. we will calculate
the bound for particular choices of an input state and a final measurement. As for
the input state, we will take the maximally entangled state. The output state of
the certification procedure can be either

ρ
N,|ψ〉
0 =

(
P⊗N0 ⊗ 1l

)( 1

dN
|1l〉〉〈〈1l|

)
=

1

dN

d2∑
i1,...,iN=1

|i1 · · · iN〉〈i1 · · · iN | ⊗
1

dN
(|φi1 · · ·φiN 〉〈φi1 · · ·φiN |)

>

=
1

d2N

d2∑
i1,...,iN=1

|i1 · · · iN〉〈i1 · · · iN | ⊗ (|φi1 · · ·φiN 〉〈φi1 · · ·φiN |)
>

(6.42)

if the measurement was P0, or

ρ
N,|ψ〉
1 =

1

d2N

d2∑
i1,...,iN=1

|i1 · · · iN〉〈i1 · · · iN | ⊗
(
|φπ(i1) · · ·φπ(iN )〉〈φπ(i1) · · ·φπ(iN )|

)>
(6.43)

if the measurement was P1. Similarly to the single-shot scenario, as both output
states are block-diagonal, we can take the measurement effect with block-diagonal
structure, which can be written as

Ω :=
d2∑

i1,...,iN=1

|i1 · · · iN〉〈i1 · · · iN | ⊗ Ω>i1···iN . (6.44)

We require that the false negative error equals zero, which translates to Ωi1···iN ⊥
|φπ(i1) · · ·φπ(iN )〉〈φπ(i1) · · ·φπ(iN )| for every multi-index i1 · · · iN . Therefore, we can
define the blocks of Ω as

Ωi1···iN := 1l− |φπ(i1) · · ·φπ(iN )〉〈φπ(i1) · · ·φπ(iN )|. (6.45)
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We calculate

tr
(

Ωρ
N,|ψ〉
0

)
= tr

((
d2∑

i1,...,iN=1

|i1 · · · iN〉〈i1 · · · iN | ⊗
(
1l− |φπ(i1) · · ·φπ(iN )〉〈φπ(i1) · · ·φπ(iN )|

)>)
(

1

d2N

d2∑
j1,...,jN=1

|j1 · · · jN〉〈j1 · · · jN | ⊗ (|φj1 · · ·φjN 〉〈φj1 · · ·φjN |)
>

))

=
1

d2N
tr

(
d2∑

i1,...,iN=1

d2∑
j1,...,jN=1

|i1 · · · iN〉〈i1 · · · iN |j1 · · · jN〉〈j1 · · · jN |

⊗
(
1l− |φπ(i1) · · ·φπ(iN )〉〈φπ(i1) · · ·φπ(iN )|

)>
(|φj1 · · ·φjN 〉〈φj1 · · ·φjN |)

>
)

=
1

d2N

d2∑
i1,...,iN=1

tr
((

1l− |φπ(i1) · · ·φπ(iN )〉〈φπ(i1) · · ·φπ(iN )|
)
|φi1 · · ·φiN 〉〈φi1 · · ·φiN |

)
=

1

d2N

d2∑
i1,...,iN=1

(
1−

∣∣〈φi1 · · ·φiN |φπ(i1) · · ·φπ(iN )〉
∣∣2)

= 1− 1

d2N

d2∑
i1,...,iN=1

∣∣〈φi1 · · ·φiN |φπ(i1) · · ·φπ(iN )〉
∣∣2 .

(6.46)

Therefore, we have

αN,P(ψ,Ω) = 1− tr
(

Ωρ
N,|ψ〉
0

)
=

1

d2N

d2∑
i1,...,iN=1

∣∣〈φi1 · · ·φiN |φπ(i1) · · ·φπ(iN )〉
∣∣2 .
(6.47)

To get the exact upper bound we need to calculate the sum, that is to explain that

d2∑
i1,...,iN=1

∣∣〈φi1 · · ·φiN |φπ(i1) · · ·φπ(iN )〉
∣∣2 =

N∑
s=0

(
N

N − s

)
kN−s(d2 − k)s

1

(d+ 1)s
.

(6.48)
First, note that∣∣〈φi1 · · ·φiN |φπ(i1) · · ·φπ(iN )〉

∣∣2 =
∣∣〈φi1|φπ(i1)〉 · · · 〈φiN |φπ(iN )〉

∣∣2 =
1

(d+ 1)s
, (6.49)

where s := |{il : il 6= π(il)}|. In other words, every time we encounter a fixed
point of the permutation we have a factor 〈φij |φπ(ij)〉 which is equal to one. Let
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us now focus on consecutive factors of the right hand site of the Eq. (6.48). The
factor

(
N
N−s

)
corresponds to choosing N − s elements for which 〈φij |φπ(ij)〉 = 1.

Then, on each of those elements there can be one of k elements (as k stands for
the number of fixed points of the permutation π), therefore kN−s. Then, on the
remaining s elements there can one of d2 − k values which are not fixed points of
the permutation, hence we obtain (d2− k)s. Further calculations reveal the concise
expression for the upper bound on the probability of making the false negative
error, that is

αN,P ≤ αN,P(ψ,Ω) =
1

d2N

N∑
s=0

(
N

N − s

)
kN−s(d2 − k)s

1

(d+ 1)s

=

(
d+ k

d2 + d

)N
.

(6.50)

In the case of permutation π having no fixed points, that is when k = 0, the
above bound simplifies to αN,P ≤

(
1
d+1

)N .
6.5 Certification of von Neumann measurements

In this section, we will study the problem of asymmetric discrimination from a bit
different perspective. We will no longer try to exclude the false negative error, but
focus on how small it can be, even when zero cannot be achieved. More precisely,
we will assume an upper bound on the probability of making the false positive
error. This bound is known in statistics as statistical significance and it will be
denoted by δ. Our goal will be to calculate how small can be the probability of
making the false negative error assuming the statistical significance δ.

Let us introduce the notation. First, recall that the probability of making the
false negative error was denoted β(ψ,Ω) := tr

(
Ωρ
|ψ〉
1

)
, where ρ|ψ〉1 was defined in

Eq. (6.9). This probability depends on the input state ψ and the measurement
{Ω, 1l− Ω}. We define

βδ := min
ψ,Ω
{β(ψ,Ω) : α(ψ,Ω) ≤ δ} (6.51)

as the optimized probability of making the false negative error when the probability
of making the false positive error is no greater than δ.

The following theorem, proved in [36], provides an expression for this optimal
probability of making the false negative error with statistical significance δ. The
technical proof is postponed to Appendix B.
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Theorem 11 Consider the problem of certification of von Neumann measurements
where P1l corresponds to the H0 hypothesis and PU corresponds to H1 hypothesis.
Then

βδ = max
E∈DU(X )

ν2√
1−δ (UE) . (6.52)

The geometrical representation of the result from Theorem 11 is depicted in
Figure 6.1. The notation in this figure is very similar to the notation used in
Figures 3.4 and 5.2. The pair of the most distance eigenvalue of the optimized
unitary matrix UE0 is denoted by λ1 and λd. They are represented on the unit
circle on the complex plane. The expression in Theorem 11 can be seen as square
of the distance between zero and the set q-numerical range, where q =

√
1− δ. In

the picture, the set q-numerical range in contained in the gray area. The detailed
shape of this set can be found in [79]. The distance between zero and q-numerical
range is denoted by ν. We can see that it depends not only on the eigenvalues of
the unitary matrix, but also on the parameter δ. This coincides with the intuition
that the bigger can be the upper bound on the false positive error, the smaller gets
the optimal probability of making the false negative error.

0 λ1 = 1

λd

ν

Figure 6.1: Geometrical interpretation of the probability of making the false
negative error in the asymmetric discrimination of von Neumann measurements. λ1

and λd denote the most distant eigenvalue of a matrix UE0, where E0 is the optimal
diagonal unitary matrix from Eq. (6.52). The q-numerical range is contained in
the gray area and ν denotes the distance from zero to the q-numerical range.

Parallel certification

Similarly as for symmetric and unambiguous discrimination, we will study parallel
discrimination of von Neumann measurements. Consider the situation when the
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certified measurement can be used N times in parallel. The scheme of parallel
certification is analogous as the ones described for symmetric and unambiguous
discrimination.

We assume that, after N queries, the probability of making the false positive
error is no greater than δ. The optimal probability of making the negative error
after N queries in parallel yields

βN,Pδ := min
ψ,Ω

{
βN,P(ψ,Ω) : αN,P(ψ,Ω) ≤ δ

}
. (6.53)

The following corollary gives us the expression for βN,Pδ .

Corollary 14 Consider the problem of parallel certification of von Neumann mea-
surements where P1l corresponds to the H0 hypothesis and PU corresponds to H1

hypothesis. Assume that there were N queries in the parallel scheme. Then

βN,Pδ = max
E∈DU(X )

ν2√
1−δ

(
U⊗NE⊗N

)
. (6.54)

Proof. We will apply Theorem 11 for von Neumann measurements P1l⊗N and
PU⊗N . We have

βN,Pδ = max
E∈DU(X⊗N )

ν2√
1−δ

(
U⊗NE

)
. (6.55)

From Theorem 5 we have that

max
E∈DU(X⊗N )

ν2√
1−δ

(
U⊗NE

)
= max

E∈DU(X )
ν2√

1−δ

(
U⊗NE⊗N

)
. (6.56)

The following Figure 6.2 represents the greometrical interpretation of the parallel
discrimination. The left picture corresponds to the single-shot case in Fig 6.1. The
right picture corresponds to two queries in the parallel scheme. The most distant
eigenvalues are this time λ1 = 1 and λ2

d. The q-numerical range is contained in the
gray area and we can see that it contains zero. Therefore, assuming the bound
δ on the probability of making the false positive error, after two queries in the
parallel scheme we can exclude the false negative error. Note that in this case,
the numerical range does not contain zero, as the closest point from numerical
range to zero in the point in the middle between λ1 = 1 and λ2

d. Thus, perfect
discrimination in the symmetric scheme would not be possible.

Can the use of processing between subsequent queries to the black box help
in the case of asymmetric discrimination? For the discrimination of von Neu-
mann measurements in both symmetric and unambiguous schemes the parallel
scheme was optimal. On the other hand, symmetric discrimination of SIC POVMs
could be improved by the use of adaptive scheme. The following theorem states

106



0 λ1 = 1

λd

ν

λ1 = 1

λ2
d

νν

0

Figure 6.2: Geometrical interpretation of the probability making the false negative
error in the asymmetric discrimination between von Neumann measurements in the
single-shot scenario (left figure) and after two queries in parallel (right figure). λ1

and λd denote the most distant eigenvalue of a matrix UE0, where E0 is the optimal
diagonal unitary matrix from Eq. (6.52). The q-numerical ranges are contained in
the gray areas. The distance from zero to the q-numerical range is denoted by ν.
In the right figure, zero is contained in the q-numerical range, that is ν = 0.

that for asymmetric discrimination of von Neumann measurements, the parallel
discrimination scheme is optimal.

Theorem 12 The parallel scenario for certification of von Neumann measurements
is optimal, i.e. the optimal probability of making the false negative error in the
adaptive scheme cannot be smaller than in the parallel scheme.

Proof. We will present the detailed proof for the case when the number of queries
to the black box equals N = 3. The proof for any greater number of queries is
analogous and it can be found in [36].

Assume we are discriminating von Neumann measurements P1l,PU of dimension
d. We will use the notation Ξ(N)(·) to denote an adaptive discrimination scheme
which takes N copies of the input (in our case N = 3) and outputs a quantum
state. Let d1 ≤ d2 ≤ d3 be natural numbers and d3 = d′3d

′′
3. These numbers will

denote dimensions of auxiliary systems in the construction of Ξ(3). This adaptive
scheme is depicted in Figure 6.3, where we use the notation P? for a black box
containing either the measurement P1l or PU . More formally, this scheme can be
written as a composition of quantum operations as

Ξ(3) (P?) =
(
1ld2 ⊗ P? ⊗ 1ld′3 ⊗ trd′′3

)
◦ Ξ2 ◦ (1ld ⊗ P? ⊗ 1ld ⊗ 1ld2)

◦ Ξ1 ◦ (P? ⊗ 1ld2 ⊗ 1ld1) (|ψ〉〈ψ|) ,
(6.57)
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P? i1 i1 i1

Vi1

P? i2 i2

Vi1,i2

P? i3

trd′′
3


|ψ〉

Figure 6.3: Scheme of the adaptive discrimination of quantum measurements from
Eq. (6.57).

where Ξj(X) = WjXW
†
j for j = 1, 2 and

W1 =
∑
i1

|i1〉〈i1| ⊗ Vi1 ;

W2 =
∑
i1,i2

|i1i2〉〈i1i2| ⊗ Vi1,i2 .
(6.58)

Now, we will use the fact that every von Neumann measurement PU can be
written as PU = ∆ ◦ Φ(UE0)† , where E0 maximizes the expression in Eq. (6.54) in
Corollary 14. Hence, the above adaptive scheme can be rewritten as

Ξ(3)(P?) =
(
∆⊗3 ⊗ 1ld′3 ⊗ trd′′3

)
◦ Ξ(3) (Φ?) , (6.59)

where

Ξ(3) (Φ?) = (1ld2 ⊗ Φ? ⊗ 1ld3) ◦ Ξ2 ◦ (1ld ⊗ Φ? ⊗ 1ld ⊗ 1ld2)

◦ Ξ1 ◦ (Φ? ⊗ 1ld2 ⊗ 1ld1) (|ψ〉〈ψ|)
(6.60)

and Φ? ∈
{
P1l,P(UE0)†

}
. This version of the adaptive discrimination scheme is

depicted in Figure 6.4.
Now we note that Ξ(3) (Φ1l) and Ξ(3)

(
Φ(UE0)†

)
are actually the adaptive schemes

of discrimination of unitary channels Φ1l and Φ(UE0)† . In such a scheme, using
the Data Processing Inequality in Lemma 9 in Appendix B, the probability of
making the false negative error in asymmetric discrimination of P1l and PU cannot
be smaller than the probability of making the false negative error in asymmetric
discrimination of Φ1l and Φ(UE0)† .

From the work [118] we know that the minimized probability of making the false
negative error forN copier of unitary channels is achieved in the parallel scheme. Let
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Φ?

W1 W2

∆ i1

Φ? ∆ i2

Φ? ∆ i3

trd′′
3


|ψ〉

Figure 6.4: Scheme of the adaptive discrimination of unitary channels from
Eq. (6.60).

β̃N,Pδ be the minimized probability of making the false negative error for asymmetric
discrimination of states Ξ(N)(P1l) and Ξ(N)(PU). From Proposition 14 we can see
that the optimal probability of making the false negative error for asymmetric
discrimination of unitary channels Φ1l and Φ(UE0)† equals ν2√

1−δ

(
U⊗NE⊗N0

)
, thus

β̃N,Pδ ≥ ν2√
1−δ

(
U⊗NE⊗N0

)
. (6.61)

From Corollary 14 we know that

βN,Pδ = ν2√
1−δ

(
U⊗NE⊗N0

)
, (6.62)

hence eventually we obtain
β̃N,Pδ ≥ βN,Pδ . (6.63)
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Chapter 7

Conclusions

This dissertation studied the problem of discrimination of quantum measurements
in symmetric, unambiguous and asymmetric settings. We proved numerous results
concerning probabilities of successful discrimination in single-shot and multiple-shot
scenarios. We studied when adaptive schemes can be helpful for discrimination.

As for the symmetric discrimination, we first analyzed the naïve discrimination
scheme when we only prepared an input state and measured it with a measurement
hidden in the black box. We calculated the probability of successful discrimination in
this scheme. Later, we considered the general entanglement-assisted discrimination
scheme. We proved a condition when von Neumann measurements could be
discriminated perfectly in the single-shot scenario. We also calculated the diamond
norm distance between von Neumann measurements which allowed us to calculate
the optimal probability of discrimination between von Neumann measurements
and present the geometrical interpretation of this quantity. We also studied
discrimination of other measurements with rank-one effects and focused on SIC
POVMs. We calculated the lower and upper bounds on the diamond norm distance
between SIC POVMs and addressed the problem when the use of entangled input
improves the discrimination. We characterized the discrimination of qubit SIC
POVMs and studied the chance of their discrimination in the asymptotic limit,
when the dimension tends to infinity.

We introduced the parallel and adaptive discrimination schemes and calculated
the probability of successful discrimination between von Neumann measurements
after N queries in parallel. We also calculated the minimal number of queries
needed to discriminate von Neumann measurements in the parallel scheme perfectly.
Interestingly, it turned out that for the discrimination of von Neumann measurement,
the parallel scheme is optimal in the sense that the use of an adaptive scheme cannot
improve the probability of successful discrimination. We calculated the diamond
norm distance between tensor products of SIC POVMs and characterized when the
SIC POVM of dimension two can be discriminated perfectly in the multiple-shot

111



case. It turned out that for the qubit case, they could be either discriminated
perfectly after two queries in the parallel scheme, or they cannot be discriminated
perfectly after any finite number of queries.

Moreover, we formulated conditions when a pair of quantum measurements
require an adaptive scheme to be discriminated perfectly, that is when perfect
discrimination cannot be achieved in the parallel scheme but it is achieved in the
adaptive scheme. We presented an example of a pair of SIC POVMs of dimension
three which cannot be discriminated perfectly after any finite number of queries
in the parallel scheme, but can be discriminated perfectly after two queries in
the adaptive scheme. We described the detailed algorithm of such an adaptive
discrimination scheme.

As far as unambiguous discrimination is concerned, we calculated the proba-
bility of unambiguous discrimination between two measurements having rank-one
effects both in the single-shot and parallel cases. We presented the geometrical
interpretation of this probability for discrimination of von Neumann measurements
and considered the particular case of unambiguous discrimination without the
assistance of entanglement. We found an expression for the probability of unam-
biguous discrimination of SIC POVMs. We also proved that for the unambiguous
discrimination of von Neumann measurements, the use of an adaptive scheme could
not improve the discrimination; that is, the parallel scheme is optimal.

We also studied asymmetric discrimination, which was based on hypothesis test-
ing. We proved a condition when general quantum channels could be discriminated
in the asymmetric scheme; that is when we can assure that no false negative error
can occur. We formulated similar conditions for general quantum measurements as
well as von Neumann measurements and SIC POVMs. We calculated the optimal
probability of making the false positive error for SIC POVMs for single-shot and
parallel schemes.

Furthermore, we considered the case when we assumed an upper bound on
the false positive error and wanted to find the optimal probability of making the
false negative error. We calculated this optimal probability for von Neumann
measurements and presented its geometrical interpretation and connection with the
notion of q-numerical range. We also analyzed the multiple-shot discrimination and
proved that the adaptive scheme could not improve the asymmetric discrimination
of von Neumann measurements.
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Appendix A

Proof of Theorem 2

In this appendix we will prove the Theorem 2. The proof requires a great deal of
additional lemmas, therefore its scheme is presented in the following graph A.1.

Theorem 2

Lemma 4

Lemma 5

Lemma 8

Proposition 12

Lemma 7

Lemma 6

Proposition 2

Proposition 3

Figure A.1: Schematic representation of the proof of Theorem 2

Propositions 2 is a known result [38] and it is cited in Section 3.3. The proof
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of Proposition 3, originally coming from [33], is presented in the main text in
Section 3.3.

A.1 Proofs of technical lemmas and proposition

In this section we will begin with proving Lemmas 4 and 5. Next, we will prove
Lemmas 6 and 7. We will continue with presenting the proofs of Proposition 12
and Lemma 8.

Lemma 4 Let U ∈ U(X ) and let PU and P1l be von Neumann measurements.
Then, for every diagonal unitary matrix E ∈ DU(X ) it holds that

‖PU − P1l‖� ≤ ‖ΦUE − Φ1l‖�. (A.1)

Proof. Let ρ> ∈ D(X ) be a quantum state which satisfy the alternative formula
for the diamond norm from Eq. (2.51), that is

‖PU − P1l‖� =
∥∥∥(1l⊗

√
ρ>
)
J (PU − P1l)

(
1l⊗

√
ρ>
)∥∥∥

1
. (A.2)

We calculate

‖PU − P1l‖� =
∥∥∥(1l⊗

√
ρ>
)
J (PU − P1l)

(
1l⊗

√
ρ>
)∥∥∥

1

=

∥∥∥∥∥(1l⊗
√
ρ>
)(∑

i

|i〉〈i| ⊗ (|ui〉〈ui| − |i〉〈i|)>
)(

1l⊗
√
ρ>
)∥∥∥∥∥

1

=
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i

|i〉〈i| ⊗
√
ρ> (|ui〉〈ui| − |i〉〈i|)>

√
ρ>
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1

=

∥∥∥∥∥∑
i

|i〉〈i| ⊗
√
ρ>
(
UE|i〉〈i|E†U † − |i〉〈i|

)>√
ρ>

∥∥∥∥∥
1

.

(A.3)

where the last equality follows from the simple observation that |ui〉〈ui| = UE|i〉〈i|E†U †.
Now, we will take advantage of the operational definition of the trace norm (see

Eq. (2.24)) which yields
‖A‖1 = max

V ∈U(X )
|trAV |. (A.4)
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Using this and the fact that the matrix is in a block-diagonal form we obtain∥∥∥∥∥∑
i

|i〉〈i| ⊗
√
ρ>
(
UE|i〉〈i|E†U † − |i〉〈i|

)>√
ρ>
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1

=
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i

tr
(√

ρ
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)√
ρVi
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= tr
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ρ
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)
,

(A.5)

where Vi is a unitary matrix that is optimal for i-th block. Therefore

‖PU − P1l‖� = tr

(∑
i
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(A.6)

Noting that∑
ij

|i〉〈j| ⊗
(
UE|i〉〈j|E†U † − |i〉〈j|

)
=
∑
ij

|i〉〈j| ⊗ UE|i〉〈j|E†U † −
∑
ij

|i〉〈j| ⊗ |i〉〈j|

= (1l⊗ UE)

(∑
ij

|i〉〈j| ⊗ |i〉〈j|

)(
1l⊗ E†U †

)
−
∑
ij

|i〉〈j| ⊗ |i〉〈j|

= (1l⊗ UE) |1l〉〉〈〈1l|
(
1l⊗ E†U †

)
− |1l〉〉〈〈1l|

= |(UE)>〉〉〈〈(UE)>| − |1l〉〉〈〈1l|

(A.7)
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we finally obtain

‖PU − P1l‖� ≤
∥∥(1l⊗√ρ)

(
|(UE)>〉〉〈〈(UE)>| − |1l〉〉〈〈1l|

)
(1l⊗√ρ)

∥∥
1

≤ ‖Φ(UE)> − Φ1l‖� = ‖ΦUE − Φ1l‖�.
(A.8)

Lemma 5 Let E0 ∈ DU(X ), U ∈ U(X ), D(E) = minρ∈D(X ) |TrρUE|, D(E0) > 0,
λ1, λd denote the eigenvalues of UE0 such that the arc between them is the largest.
Let P1, Pd denote the projectors onto the subspaces spanned by the eigenvectors
corresponding to λ1, λd.

Then, the function |Tr(ρUE)| has a saddle point in (ρ0, E0) if and only if there
exist states ρ1, ρd such that

ρ1 = P1ρ1P1, ρd = PdρdPd, diag(ρ1) = diag(ρd). (A.9)

Proof. We will begin with proving the reverse implication by defining a state
ρ0 ∈ D(X ) as

ρ0 :=
1

2
(ρ1 + ρd) (A.10)

We see that |Tr(UE0ρ0)| = D(E0). For arbitrary E ∈ DU(X ), direct calculation
gives us

|Tr(UE0ρ0)| ≥ |Tr(UEρ0)| ≥ min
ρ∈D(X )

|Tr(UEρ)|. (A.11)

That means D(E0) ≥ D(E) and |Tr(UE0ρ0)| = min
ρ
|Tr(UE0ρ)| = max

E
|Tr(UEρ0)|.

Now we prove the direct implication. Without loss of generality we may assume
λ1 = λ and λd = λ. Since ρ0 gives minimum of the |trρUE|, thus ρ0 is supported
on the subspace spanned by the range of P1 and Pd, i.e.

ρ0 = Pρ0P for P = P1 + Pd. (A.12)

We may write

ρ0 = Pρ0P = P1ρ0P1 + Pdρ0Pd + P1ρPd + Pdρ0P1 (A.13)

and define

ρ1 = P1ρ0P1,

ρd = Pdρ0Pd,

ρ1d = P1ρ0Pd,

ρd1 = Pdρ0P1.

(A.14)
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Note that the optimality forces tr(ρ1) = tr(ρd) = 1
2
. Now we write

zi = 〈i|ρ0UE0|i〉 = λ〈i|ρ1|i〉+ λ〈i|ρd|i〉+ 2Re(λ〈i|ρd1|i〉). (A.15)

We have
∑

i zi = λ+λ
2
. If elements zi have different phases, then by additional

diagonal unitary matrix one can increase the value of the sum and contradict to
the fact that (ρ0, E0) is a saddle point. Therefore, we conclude that all elements
have the same phase and therefore we obtain that 〈i|ρ1|i〉 = 〈i|ρd|i〉 for every i.
Lemma 6 Von Neumann measurements PU and P1l can be discriminated perfectly
if and only if for all real vectors (x1, . . . , x2d) ∈ R2d we have 0 ∈ W

(∑2d
i=1 xiAi

)
.

Proof. From Proposition 3 we know that PU and P1l can be discriminated perfectly
if and only in there exists a state ρ satisfying diag(U †ρ) = 0. We will write this
condition as a semidefinite program, but first we need to introduce additional
notation. Let A0 := 1l and

Ai := U |i〉〈i|+ |i〉〈i|U † (A.16)

for i = 1, . . . , d and
Ai := −i

(
U |i〉〈i|+ |i〉〈i|U †

)
(A.17)

for i = d + 1, . . . , 2d. The semidefinite program for checking if von Neumann
measurements can be discriminated perfectly is as follows

Primal problem

maximize: TrρA0

subject to: TrρAi = 0

Trρ = 1

ρ ∈ Pos(X )

Dual problem

minimize: 〈0|Y |0〉

subject to:
2d∑
i=0

AiYii ≥ 1l

Y ∈ Herm(X ).

In the above program, the target of maximization is a trivial function tr(ρ),
which is later restricted to be equal to one. Thus, the primal problem reduces to
satisfying the constraints. Fortunately, from [119, Thm 3] it holds that our primal
problem has no solutions ρ ≥ 0 if and only if

inf
(x0,...,x2d)∈R2d+1

ex0tr
(

e
∑2d
i=1 xiAi

)
− x0 = −∞. (A.18)

This is equivalent to the condition that there exists a vector (x1, . . . , x2d) ∈ R2d

such that
∑2d

i=1 xiAi < 0, that is, the real span of Ai contains only matrices without
a determined sign.
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Lemma 7 Von Neumann measurements PU and P1l can be discriminated perfectly
if and only if for every diagonal matrix D it holds that 0 ∈ W

(
UD +D†U †

)
.

Proof. In the first part of the proof we assume that PU and P1l can be discriminated
perfectly. Therefore, from Proposition 3 we known that there must exist a state
ρ ∈ D(X ) such that

diag(U †ρ) = 0. (A.19)

Hence for every diagonal matrix D is must also hold that diag(D†U †ρ) = 0 as well
as diag(ρUD) = 0. Therefore 0 ∈ W

(
UD +D†U †

)
.

To prove the other implication, we first note that every diagonal matrix of
dimension d = dim(X ) can be expressed as

D = diag†(x1 − ixd+1, x2 − ixd+2, . . . , xd − ix2d) (A.20)

for some real numbers x1, . . . , x2d. We assume that for every diagonal matrix D it
holds that 0 ∈ W

(
UD +D†U †

)
. Thus, there must exist a state |ψ〉 such that

〈ψ|
(
UD +D†U †

)
|ψ〉 = 0. (A.21)

Using the notation
Ai := U |i〉〈i|+ |i〉〈i|U † (A.22)

for i = 1, . . . , d and
Ai := −i

(
U |i〉〈i|+ |i〉〈i|U †

)
(A.23)

for i = d+ 1, . . . , 2d, the condition in Eq. (A.21) can be rewritten as

〈ψ|

(
2d∑
i=1

xiAi

)
|ψ〉 = 0. (A.24)

Using Lemma 6 we obtain that PU and P1l can be discriminated perfectly.

Proposition 12 Let U ∈ U(X ). Von Neumann measurements PU and P1l can be
discriminated perfectly if and only if for all diagonal unitary matrices E ∈ DU(X ),
unitary channels ΦUE and Φ1l can be discriminated perfectly.

Proof. To prove the direct implication, assume that PU and P1l can be discrim-
inated perfectly. Then, from Proposition 3 there must exist a quantum state
ρ ∈ D(X ) such that

diag(U †ρ) = 0. (A.25)

Therefore for every E ∈ DU(X ) it also holds that diag(E†U †ρ) = 0. Hence 0 ∈
W (E†U †), and by Proposition 2 we obtain that ΦUE and Φ1l can be discriminated
perfectly

128



Now we will focus on the reverse implication. Assume that ΦUE and the identity
channel Φ1l can be discriminated perfectly for every E ∈ DU(X ). By Proposition 2
this can be written as 0 ∈ W (E†U †). We will be working towards showing that
for any diagonal matrix D (not necessarily unitary), we have 0 ∈ W

(
UD +D†U †

)
(see Lemma 7). One may assume that D is invertible as otherwise we would have
〈ϕ|
(
UD +D†U †

)
|ϕ〉 = 0 for some |ϕ〉 ∈ ker(D). We can write

UD = UED+, (A.26)

where E ∈ DU(X ) and D+ is a strictly positive diagonal matrix. Let V be a
unitary matrix such that

UE = V diag†(λ)V †, (A.27)

where λ is a vector of eigenvalues of UE. As we were assuming that 0 ∈ W (E†U †),
there must exist a probability vector p, such that∑

i

λipi = 0. (A.28)

We define a quantum state σ as

σ = V diag†(q)V †, (A.29)

where

qi =
pi

〈i|V †D+V |i〉

(∑
j

pj
〈j|V †D+V |j〉

)−1

. (A.30)

Using Eq. (A.26) and (A.27) we calculate

tr (UDσ) = tr
(
V diag†(λ)V †D+V diag†(q)V †

)
= tr

(
V †D+V diag†(q)V †V diag†(λ)

)
=
∑
i

〈i|
(
V †D+V diag†(q)diag†(λ)

)
|i〉

=
∑
i

λiqi〈i|V †D+V |i〉,

(A.31)

and applying the definition of the state σ we have
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tr (UDσ) =
∑
i

λi〈i|V †D+V |i〉
pi

〈i|V †D+V |i〉

(∑
j

pj
〈j|V †D+V |j〉

)−1

=
∑
i

λipi

(∑
j

pj
〈j|V †D+V |j〉

)−1

= 0,

(A.32)

where the last equality follows from Eq. (A.28). Therefore, 0 ∈ W (UD), and
eventually 0 ∈ W

(
UD +D†U †

)
.

Lemma 8 Let U ∈ U(X ). Then

min
ρ∈D(X )

max
E∈DU(X )

|Tr(ρUE)| = max
E∈DU(X )

min
ρ∈D(X )

|Tr(ρUE)|. (A.33)

Proof. By the use of Proposition 2 we note that

min
E∈DU(X )

‖ΦUE − Φ1l‖� = 2
√

1− max
E∈DU(X )

min
ρ∈D(X )

|Tr (ρUE) |2. (A.34)

Let us first focus on the case when minE∈DU(X ) ‖ΦUE − Φ1l‖� = 2. Then

max
E∈DU(X )

min
ρ∈D(X )

|Tr (ρUE) | = 0. (A.35)

On the other hand, from Proposition 12 we have that PU and P1 can be discrimi-
nated perfectly. Therefore, following Proposition 3, there exists a state ρ0 ∈ D(X )
such that diag (ρ0U) = 0, and hence |Tr(ρ0UE)| = 0 for every E ∈ DU(X ). Thus

0 = max
E∈DU(X )

|Tr(ρ0UE)| = min
ρ∈D(X )

max
E∈DU(X )

|Tr(ρUE)|. (A.36)

Therefore, in the case when minE∈DU(X ) ‖ΦUE − Φ1l‖� = 2, we have

max
E∈DU(X )

min
ρ∈D(X )

|Tr (ρUE) | = min
ρ∈D(X )

max
E∈DU(X )

|Tr(ρUE)|. (A.37)

Now we assume assume that minE∈DU(X ) ‖ΦUE −Φ1l‖� < 2. From Proposition 2
we have

min
E∈DU(X )

‖ΦUE − Φ1l‖� = 2
√

1− max
E∈DU(X )

min
ρ∈D(X )

|Tr(ρUE)|2. (A.38)
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In the case of ρ0 ∈ D(X ) and E0 ∈ DU(X ) which saturate minE∈DU(X ) ‖ΦUE−Φ1l‖�,
we have that 0 /∈ W (UE0).

Let D≤1(X ) be the set of diagonal matrices E such that |Eii| ≤ 1 for every i.
Recall from Subsection 2.1.1 that the set D(X ) is compact and convex. Similarly,
the set D≤1(X ) is also convex and compact. Moreover, the sets {E ∈ D≤1(X ) :
Re(Tr(ρUE)) = maxD∈D≤1(X ) Re(Tr(ρUD))} and {ρ ∈ D(X ) : Re(Tr(ρUE)) =
minσ∈D(X ) Re(Tr(σUE))} are convex. Next, we check that all the assumptions of
the Theorem 3 in [120] are fulfilled, thus we obtain the existence of saddle points,
that is

min
ρ∈D(X )

max
E∈D≤1(X )

Re (Tr(ρUE)) = max
E∈D≤1(X )

min
ρ∈D(X )

Re (Tr(ρUE)) . (A.39)

From the above equation, for a saddle point (ρ0, E0) we have

Re (Tr (ρ0UE0)) = Tr (ρ0UE0) = |Tr (ρ0UE0) |. (A.40)

Moreover,
max
E
|Tr (ρ0UE) | =

∑
i

|〈i|ρ0U |i〉| = Tr (ρ0UE0) (A.41)

and
Tr (ρ0UE0) = min

ρ
|Tr (ρUE0) |. (A.42)

From the above we obtain that (ρ0, E0) is the saddle point of |Tr(ρUE)|, that is

min
ρ∈D(X )

max
E∈D≤1(X )

|Tr(ρUE)| = max
E∈D≤1(X )

min
ρ∈D(X )

|Tr(ρUE)|. (A.43)

Let E0 := F0D, where F0 ∈ DU(X ) andD is a diagonal matrix with 0 ≤ Dii ≤ 1
for every i. We will show that we have the saddle point also for (ρ0, F0). First,
observe that for every U ∈ U(X ) it hods that

min
ρ
|TrρU | ≥ min

ρ
|TrρUD|. (A.44)

Now, we will consider two cases: when 0 ∈ W (U) and when 0 6∈ W (U).
In the former case, when 0 ∈ W (U), then for some probability vector p we
have

∑
i λipi = 0, where λi are the eigenvalues of U . If there exists i such

that 〈λi|D|λi〉 = 0, then |Tr|λi〉〈λi|UD| = 0. Otherwise, we can take the state
ρ =

∑
i qi|λi〉〈λi|, where qi = pi

〈λi|D|λi〉 and notice that 0 ∈ W (UD).

In the case when 0 6∈ W (U), for the most distant pair of eigenvalues, λ1, λd, of
the matrix U we can the the Töplitz-Hausdorff theorem. It gives the inclusion of
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the interval in a numerical range

[Tr|λ1〉〈λ1|UD,Tr|λd〉〈λd|UD] = [λ1〈λ1|D|λ1〉, λd〈λd|D|λd〉] ⊂ W (UD). (A.45)

In our case, using the optimality condition we obtain

min
ρ
|TrρUF0| = min

ρ
|TrρUF0D|. (A.46)

To finish the proof, it remains to check whether (ρ0, F0) is the saddle point. We
have

|Trρ0UF0| ≤ max
E∈D≤1(X )

|Trρ0UE| = |Trρ0UE0| = min
ρ
|TrρUF0D|

= min
ρ
|TrρUF0| ≤ |Trρ0UF0|.

(A.47)

From the above we obtain

|Trρ0UF0| = min
ρ
|TrρUF0| = max

E∈D≤1(X )
|Trρ0UE|, (A.48)

and eventually

min
ρ∈D(X )

max
E∈DU(X )

|Tr(ρUE)| = max
E∈DU(X )

min
ρ∈D(X )

|Tr(ρUE)|. (A.49)

A.2 Proof of Theorem 2

Proof of Theorem 2. We will consider two cases, when minE∈DU(X ) ‖ΦUE −
Φ1l‖� = 2, and when minE∈DU(X ) ‖ΦUE − Φ1l‖� < 2. The former case is considered
in Proposition 12, which states that measurements PU and P1l can be discriminated
perfectly if and only if unitary channels ΦUE and Φ1l can be discriminated perfectly
for every E ∈ DU(X ). Therefore, when minE∈DU(X ) ‖ΦUE − Φ1l‖� = 2, then also
‖PU − P1l‖� = 2.

In the remaining part of the proof we will focus on the latter case when
minDU(X ) ‖ΦUE − Φ1l‖� < 2. Lemma 8 guarantees the existence of a saddle point
(ρ0, E0) and utilizing Lemma 5 (and its proof), we define a new state

τ =
1

2
(ρ1 + ρd) . (A.50)
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Following the proof of Proposition 3 we calculate according to Eq. (3.11).

∥∥(1l⊗
√
τ)J (PUE0 − P1l) (1l⊗

√
τ)
∥∥

1
=

d∑
i=1

√
(〈ui|τ |ui〉+ 〈i|τ |i〉)2 − 4 |〈ui|τ |i〉|2.

(A.51)
Direct calculation gives

d∑
i=1

√
(〈ui|τ |ui〉+ 〈i|τ |i〉)2 − 4 |〈ui|τ |i〉|2 = 2

√
1−

∣∣∣∣λ1 + λd
2

∣∣∣∣2, (A.52)

where
∣∣λ1+λd

2

∣∣ = |Tr (τUE0) |. To finish this proof we use Lemma 4, which states
that ‖PU − P1l‖� ≤ ‖ΦUE − Φ1l‖�. Therefore

2

√
1−

∣∣∣∣λ1 + λd
2

∣∣∣∣2 =
∥∥(1l⊗

√
τ)J(PU − P1l)(1l⊗

√
τ)
∥∥

1
≤ ‖PU − P1l‖�

≤ min
E∈DU(X )

‖ΦUE − Φ1l‖� = 2

√
1−

∣∣∣∣λ1 + λd
2

∣∣∣∣2
(A.53)

which eventually gives ‖PU − P1l‖� = minE∈DU(X ) ‖ΦUE − Φ1l‖�.
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Appendix B

Proof of Theorem 11

In this appendix we will present the proof of Theorem 11. Before we do so, we
will quickly review the results for asymmetric discrimination of pure quantum
states and unitary channels in Section B.1 These results will be used to prove the
Theorem 11, and we will state them along with a short background of the problem
formulation.

Later, in Section B.2, we will prove some additional lemmas which will make
the proof of Theorem 11 easier to read. Finally, the proof of Theorem 11 will be
presented in Section B.3.

B.1 Asymmetric discrimination of pure states and
unitary channels

Asymmetric discrimination of pure states [36,66] Consider the problem of
asymmetric discrimination of pure quantum states |ψ〉 and |ϕ〉. Let |ψ〉 correspond
to the H0 hypothesis while |ϕ〉 correspond to the H1 hypothesis. The scheme
of discrimination of pure states is straightforward - we only measure the state
with the binary measurement {Ω, 1l− Ω}. When the obtained measurement label
corresponds to the effect Ω, we accept the hypothesis H0. When the measurement
label corresponds to the effect 1l− Ω, we reject the H0 hypothesis.

The probability of making the false positive error yields

α(Ω) := 〈ψ| (1l− Ω) |ψ〉 (B.1)

The optimal probability of making the false negative error is defined as

βδ := min
Ω
{〈ϕ|Ω|ϕ〉 : α(Ω) ≤ δ} . (B.2)
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Proposition 13 With the notation as above, it holds that

βδ =

0, if |〈ψ|ϕ〉| ≤
√
δ(

|〈ψ|ϕ〉|
√

1− δ −
√

1− |〈ψ|ϕ〉|2
√
δ
)2

, if |〈ψ|ϕ〉| >
√
δ

. (B.3)

Asymmetric discrimination of unitary channels [36,118] Let H0 hypoth-
esis correspond to the identity channel Φ1l = 1l and let H0 correspond to another
unitary channel ΦU . To discriminate unitary channels, we can use an additional
register and prepare an entangled input state. We apply the the unitary channel
(either Φ1l or ΦU) on the first register and the identity channels on the second
register. Having the input state |ψ〉 fixed, we can write conditional hypotheses as
H0 : |ψ〉 and H1 : (U ⊗ 1l)|ψ〉.

Then, we measure the output state with a binary measurement PF = {Ω, 1l−Ω}.
When we obtained a measurement label corresponding to the effect Ω, then we
accept the hypothesis H0. When we obtained the measurement label corresponding
to the effect 1l−Ω, then we reject the H0 hypothesis and accept the H1 hypothesis.

For the fixed input state and final measurement, the probability of making the
false positive error yields

α(ψ,Ω) := 〈ψ| (1l− Ω) |ψ〉. (B.4)

The optimized probability of making the false negative error yields

βδ := min
ψ,Ω
{tr (Ω (ΦU ⊗ 1l) (|ψ〉〈ψ|)) : α(ψ,Ω) ≤ δ} . (B.5)

Proposition 14 With the notation as above, it holds that

βδ = ν2√
1−δ(U). (B.6)

B.2 Proofs of technical lemmas

Both lemmas presented in this section were proved in [36].

Lemma 9 Let δ > 0 and Ω be a measurement effect, that is a positive semidefinite
operator satisfying Ω ≤ 1l. For every quantum channel Ψ and quantum states ρ0, ρ1

it holds that

min
Ω: tr(Ωρ0)≥1−δ

tr (Ωρ1) ≤ min
Ω: tr(ΩΨ(ρ0))≥1−δ

tr (ΩΨ(ρ1)) . (B.7)
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Proof. First we note that

min
Ω: tr(ΩΨ(ρ0))≥1−δ

tr (ΩΨ(ρ1)) = min
Ω: tr(Ψ†(Ω)ρ0)≥1−δ

tr
(
Ψ†(Ω)ρ0

)
(B.8)

and Ψ†(Ω) is also a measurement effect. Moreover{
Ψ†(Ω) : tr

(
Ψ†(Ω)ρ0

)
≥ 1− δ

}
⊆ {Ω : tr (Ωρ0) ≥ 1− δ} . (B.9)

Finally
min

Ω: tr(Ωρ0)≥1−δ
tr (Ωρ1) ≤ min

Ω: tr(ΩΨ(ρ0))≥1−δ
tr (ΩΨ(ρ1)) . (B.10)

Lemma 10 Let ρ0 = 1
2
ρ1 + 1

2
ρd a quantum state satisfying conditions given by

Lemma 5 in Appendix A. Then, for each i ∈ {1, . . . , d} it holds that

tr (
√
ρ0|i〉〈i|

√
ρ0) = tr

(√
ρ0U |i〉〈i|U †

√
ρ0

)
. (B.11)

Moreover, for each i ∈ {1, . . . , d} such that 〈i|ρ0|i〉 6= 0 it holds that∣∣∣∣〈i|ρ0U |i〉
〈i|ρ0|i〉

∣∣∣∣ =

∣∣∣∣λ1 + λd
2

∣∣∣∣ . (B.12)

Proof. Let U =
∑d

i=1 λiΠi, where {Πi}di=1 is a set of orthogonal projectors. Then

tr
(√

ρ0U |i〉〈i|U †
√
ρ0

)
= 〈i|U †ρU |i〉 = 〈i|U †

(
1

2
ρ1 +

1

2
ρd

)
U |i〉

= 〈i|U †
(

1

2
Π1ρ1Π1 +

1

2
ΠdρdΠd

)
U |i〉

= 〈i|

(
d∑
i=1

λiΠ
†
i

)(
1

2
Π1ρ1Π1 +

1

2
ΠdρdΠd

)( d∑
i=1

λiΠi

)
|i〉

= 〈i|
(

1

2
ρ1 +

1

2
ρd

)
|i〉 = tr (

√
ρ0|i〉〈i|

√
ρ0) ,

(B.13)

where the third equality follows from Lemma 5 in Appendix A.
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To prove the second part of the proposition we calculate

∣∣∣∣〈i|ρ0U |i〉
〈i|ρ0|i〉

∣∣∣∣ =

∣∣∣∣∣∣
〈i|
(

1
2
ρ1 + 1

2
ρd
) (∑d

i=1 λiΠi

)
|i〉

〈i|ρ0|i〉

∣∣∣∣∣∣
=

∣∣∣∣∣〈i|
∑d

i=1 λi
(

1
2
Π1ρ1Π1 + 1

2
ΠdρdΠd

)
Πi|i〉

〈i|ρ0|i〉

∣∣∣∣∣
=

∣∣∣∣∣〈i|
(

1
2
λ1Π1ρ1Π1 + 1

2
λdΠdρdΠd

)
|i〉

〈i|ρ0|i〉

∣∣∣∣∣
=

∣∣∣∣∣〈i|
(

1
2
λ1ρ1 + 1

2
λdρd

)
|i〉

〈i|ρ0|i〉

∣∣∣∣∣ =

∣∣∣∣λ1 + λd
2

∣∣∣∣ .

(B.14)

B.3 Proof of Theorem 11

The following proof was originally presented in [36].

Proof. In the scheme of certification of von Neumann measurements, the optimized
probability of type II error can be expressed as

βδ := min
ψ,Ω
{tr (Ω (PU ⊗ 1l) (|ψ〉〈ψ|)) : α(ψ,Ω) ≤ δ} . (B.15)

Our goal is to prove that

βδ = max
E∈DU(X )

ν2√
1−δ (UE) . (B.16)

The proof is divided into two parts. In the first part we will show the lower
bound on βδ using Data Processing Inequality presented in Lemma 9. In the second
part we will show the upper bound on βδ.

The lower bound

This part of the proof will mostly be based on Data Processing Inequality in
Lemma 9. To show that

βδ ≥ max
E∈DU(X )

ν2√
1−δ (UE) , (B.17)
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let us begin with an observation that every von Neumann measurement PU can be
rewritten as ∆ ◦ Φ(UE)† , where ∆ denotes the completely dephasing channel and
E ∈ DU(X ). Therefore, utilizing the Data Processing Inequality in Lemma 9, along
with the certification scheme of unitary channels in Proposition 14, the optimized
probability of the type II error is lower-bounded by

βδ ≥ min
ψ,Ω

{
tr
(
Ω
(
Φ(UE)† ⊗ 1l

)
(|ψ〉〈ψ|)

)
: α(ψ,Ω) ≤ δ

}
= ν2√

1−δ

(
(UE)†

)
= ν2√

1−δ (UE) ,
(B.18)

which holds for each E ∈ DU(X ). Hence, maximizing the value of ν2√
1−δ (UE) over

E ∈ DU(X ) leads to the lower bound of the form

βδ ≥ max
E∈DU(X )

ν2√
1−δ (UE) . (B.19)

The upper bound

Now we proceed to proving the upper bound.The proof of the inequality

βδ ≤ max
E∈DU(X )

ν2√
1−δ (UE) (B.20)

will be divided into two cases depending on the diamond norm distance between
PU and P1l. In either case we will construct a strategy, that is choose a state |ψ0〉
and a measurement Ω0. As for every choice of |ψ〉 and Ω it holds that

βδ ≤ tr (Ω(PU ⊗ 1l)(|ψ〉〈ψ|)) , (B.21)

we will show that for some fixed |ψ0〉 and Ω0 it holds that

tr (Ω0(PU ⊗ 1l)(|ψ0〉〈ψ0|)) = max
E∈DU(X )

ν2√
1−δ (UE) . (B.22)

First we focus on the case when ‖PU −P1l‖� = 2. We take a state |ψ0〉 for which
it holds that

‖PU − P1l‖� = ‖ ((PU − P1l)⊗ 1l) (|ψ0〉〈ψ0|)‖1. (B.23)

Then, the output states (PU ⊗ 1l)(|ψ0〉〈ψ0|) and (P1l ⊗ 1l)(|ψ0〉〈ψ0|) are orthogonal
and by taking the measurement Ω0 as the projection onto the support of (P1l ⊗
1l)(|ψ0〉〈ψ0|) we obtain

tr (Ω0(PU ⊗ 1l)(|ψ0〉〈ψ0|)) = 0. (B.24)
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Let us recall that from Proposition 2 we know that

||ΦU − Φ1l||� = 2
√

1− ν2 (U), (B.25)

and from Theorem 2 it holds that

||PU − P1l||� = min
E∈DU(X )

||ΦUE − Φ1||�. (B.26)

Utilizing Eq. (B.25) and (B.26) we obtain that

max
E∈DU(X )

ν2 (UE) = 0. (B.27)

By the property that 0 ∈ W√1−δ(UE) whenever 0 ∈ W (UE), we have that

max
E∈DU(X )

ν2√
1−δ (UE) = 0. (B.28)

Secondly, we consider the situation when ‖PU − P1l‖� < 2. Let

E0 ∈ arg max
E∈DU(X )

ν (UE) . (B.29)

Again, by referring to Eq. (B.25) and (B.26) we obtain that ν (UE0) > 0. Let
λ1, λd be a pair of the most distant eigenvalues of UE0. Note that the following
relation holds

ν (UE0) =
|λ1 + λd|

2
. (B.30)

As the assumptions of the Lemma 5 in Appendix B are saturated for the defined
E0, we consider the input state

|ψ0〉 =
d∑
i=1

√
ρ0|i〉 ⊗ |i〉, (B.31)

where the existence of ρ0 together with its properties are described in Lemma 5
and Lemma 10. Let us define sets

Ci :=

{
Ω : 0 ≤ Ω ≤ 1l, tr

(
(1l− Ω)

√
ρ0|i〉〈i|

√
ρ0

〈i|ρ0|i〉

)
≤ δ

}
(B.32)

for each i such that 〈i|ρ0|i〉 6= 0. Now we take the measurement Ω0 as

Ω0 =
d∑
i=1

|i〉〈i| ⊗ Ω>i , (B.33)
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where Ωi ∈ Ci is defined as

Ωi ∈ arg min
Ω̃∈Ci

tr

(
Ω̃

√
ρ0U |i〉〈i|U †

√
ρ0

〈i|ρ0|i〉

)
(B.34)

for each i ∈ {1, . . . , d} such that 〈i|ρ0|i〉 6= 0 and Ωi = 0 otherwise.

Now we check that the statistical significance is satisfied, that is for the described
strategy we have

α(ψ0,Ω0) = 1−tr (Ω0(P1l ⊗ 1l)(|ψ0〉〈ψ0|)) = 1−
d∑
i=1

tr (Ωi
√
ρ0|i〉〈i|

√
ρ0) ≤ δ. (B.35)

Hence, it remains to show that for this setting

tr (Ω0(PU ⊗ 1l)(|ψ0〉〈ψ0|)) = max
E∈DU(X )

ν2√
1−δ (UE) . (B.36)

Direct calculations reveal that

tr (Ω0(PU ⊗ 1l)(|ψ0〉〈ψ0|)) =
d∑
i=1

tr
(
Ωi
√
ρ0U |i〉〈i|U †

√
ρ0

)
=

d∑
i=1

〈i|ρ0|i〉tr
(

Ωi

√
ρ0U |i〉〈i|U †

√
ρ0

〈i|ρ0|i〉

)
.

(B.37)

Let us define

β|i = tr

(
Ωi

√
ρ0U |i〉〈i|U †

√
ρ0

〈i|ρ0|i〉

)
. (B.38)

Note that due to Lemma 10, the absolute value of the inner product between
pure states

√
ρ0|i〉

‖√ρ0|i〉‖ and
√
ρ0U |i〉
‖√ρ0|i〉‖ is the same for every i ∈ {1, . . . , d} : 〈i|ρ|i〉 6= 0.

Therefore, we can consider the certification of pure states conditioned on the
obtained label i with statistical significance δ. From the Proposition 13 we know
that β|i depends only on such an inner product between the certified states, hence
β|i = β|j for each i, j : 〈i|ρ|i〉, 〈j|ρ|j〉 6= 0. Therefore, the value of β|i will depend
on
∣∣λ1+λd

2

∣∣. Thus, without loss of generality. we can assume that p|1II 6= 0, and hence

d∑
i=1

〈i|ρ0|i〉β|i = β|1 = tr

(
Ω1

√
ρ0U |1〉〈1|U †

√
ρ0

〈1|ρ0|1〉

)
. (B.39)
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In the remaining part of the proof we will show that

β|1 = max
E∈DU(X )

ν2√
1−δ (UE) . (B.40)

It is sufficient to study two cases depending on the relation between
√
δ and the

inner product ∣∣∣∣〈1|ρ0U |1〉
〈1|ρ0|1〉

∣∣∣∣ =

∣∣∣∣λ1 + λd
2

∣∣∣∣ . (B.41)

In the case when
∣∣λ1+λd

2

∣∣ ≤ √δ, then, due to Proposition 13, we get β|1 = 0.
On the other hand, we know that 0 ∈ W√1−δ(UE0) and hence also

max
E∈DU(X )

ν2√
1−δ (UE) = 0. (B.42)

In the case when
∣∣λ1+λd

2

∣∣ > √δ, then, from Proposition 13, we know that

β|1 =

∣∣∣∣λ1 + λd
2

∣∣∣∣√1− δ −

√
1−

∣∣∣∣λ1 + λd
2

∣∣∣∣2√δ
2

. (B.43)

On the other hand, for E0 ∈ DU(X ) satisfying Eq. (B.29), we have

ν2√
1−δ (UE0) =

∣∣∣∣λ1 + λd
2

∣∣∣∣√1− δ −

√
1−

∣∣∣∣λ1 + λd
2

∣∣∣∣2√δ
2

. (B.44)

By the particular choice of E0 ∈ DU(X ), this value is equal to maxE∈DU(X ) ν
2√

1−δ (UE),
hence combining the above equations we finally obtain

β|1 = max
E∈DU(X )

ν2√
1−δ (UE) . (B.45)

To sum up, we indicated Ω0 and |ψ0〉 for which the optimized probability of type
II error was equal to maxE∈DU(X ) ν

2√
1−δ (UE). Combining this with the previously

proved inequality
βδ ≥ max

E∈DU(X )
ν2√

1−δ (UE) (B.46)

gives us Eq. (B.16) and proves that the proposed strategy |ψ0〉,Ω0 is optimal.
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