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Abstract

Traffic classification is an important tool for network management.
It reveals the source of observed network traffic and has many potential
applications in Quality of Service, network security, traffic visualiza-
tion, and more. In the last decade, traffic classification evolved quickly
due to the raise of peer-to-peer traffic. Nowadays, researchers still find
new methods in order to withstand the rapid changes in the Internet.

In this paper, we review 13 papers on traffic classification and re-
lated topics that were published during 2009-2012. We show diversity
in recent algorithms and we highlight possible directions for the future
research on traffic classification: relevance of multi-level classification,
importance of experimental validation, and the need for common traffic
datasets.

1 Introduction

Internet traffic classification—or identification—is the act of matching IP
packets to the application that generated them. Traffic classification is im-
portant for managing computer networks: for example, it is used for traf-
fic shaping, policy routing, and packet filtering. From business point of
view, it provides valuable marketing information via customer profiling [1],
whereas scientific and government agencies employ it to identify global In-
ternet trends [2, 3].

Given just a single IP packet it is difficult to classify it—there is no ap-
plication name in the protocol headers. In the past, the service port number
was used for discriminating the traffic class [4], but this became ineffective in
the early 2000s due to peer-to-peer (P2P) traffic [5]. Another popular and
de facto standard classification method is Deep Packet Inspection (DPI):
pattern matching on full packet contents. Despite being accurate, it is
computationally expensive and brings privacy concerns. Moreover, traffic
encryption makes DPI increasingly irrelevant [6].
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Instead, novel classifiers investigate groups of packets—in order to find
distinguishing features of entire application protocols. Usually, a flow of
packets is statistically summarized [7] (e.g. by average packet size and
inter-packet arrival time) and the resultant feature vector is classified us-
ing Machine Learning (ML) [8] (e.g. Neural Network or Support Vector
Machine). Such methods are largely resistant to misuse of the port number
and to encryption: the overall behavior of a particular protocol or host is
examined instead of seeking for a strict match in a single packet.

Latest methods tackle the problem of classification from many perspec-
tives: counting packets [9], analyzing the DNS context [10], adopting multi-
classification [11], and more. Our “Multilevel Traffic Classification” project
(MuTriCs) [12] develops an algorithm that combines different methods to
increase classification completeness and accuracy.

The aim of this work is to discuss diversity in classification methods. We
also share our findings on the quality of traffic classification papers. For the
review, we selected publications that: (a) present differentiated methods, (b)
were published recently (2009-2012), and (c) are interesting in our opinion.

Comparing with existing surveys—namely [13], [14], and [3]—our pa-
per focuses on different time span. We review newer works that were not
mentioned in these studies: they represent novel developments in traffic
classification (e.g. [9–11, 15]). Moreover, our paper gives the reader a quick
insight into the methods for extracting traffic features (summarized in Table
3). We show that combining these different methods into one system can be
an interesting avenue for future research on traffic classification.

We assume basic knowledge of the reader on traffic classification. For a
general introduction, we refer to the works cited in the next section: partic-
ularly, [13] presents required background on traffic classification and ML.

The paper is organized as follows: in section 2, we reference related
surveys and analysis papers; in section 3, we give the review; in section
4, we discuss our findings and finally we conclude in section 5. This paper
reviews 13 papers, but an accompanying web site [16] also offers an extended
comparison of 21 works in a tabular form.

2 Related works

In an widely cited and comprehensive survey of traffic classification using
ML [13], Nguyen et al. review works published during 2004-2007. The
authors claim that ML was used for the first time for classifying traffic in
1994 [17], and that it was the starting point for much of the further work.
However, many works fundamental to the state of the art appeared about a
decade later, e.g. [6, 18–22].

A survey by Callado et al. [14] divides traffic analysis into packet- and
flow-based, and references several traffic classification papers published dur-
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ing 2004-2007. Four algorithms are compared in terms of completeness and
accuracy: BLINC [6], Bayesian [19], ”On The Fly” [22], and Payload Analy-
sis [23]. The authors conclude with recommendations for traffic classification
and pose eight research questions.

A paper by M. Zhang et al. [3] and its accompanying website [24] present
a list of 68 traffic classification papers published during 1994-2009 together
with a catalog of 86 datasets used in these works. The authors propose a
structured taxonomy of traffic classification and use it to answer the ques-
tion on the global share of P2P traffic—basing on the results found in the
reviewed papers.

Kim et al. in [8] give an insightful comparison of three general approaches
to traffic classification: ports-based, host-behavior-based, and flow-features-
based. The authors evaluate these methods on a strong, few-terabyte dataset
collected at diverse geographical locations. Their five key findings were:
1) port number can still constitute a relevant feature; 2) behavior-based
classification can be ineffective on backbone links and 3) it may exhibit low
byte accuracy; 4) backbone traffic classification needs unidirectional TCP
flow features; 5) their classifier based on Support Vector Machine (SVM)
outperformed other ML algorithms and produced robust results once it was
trained with a representative, unbiased training set.

In a recent study, Dainotti et al. [7] anticipate future directions in traffic
classification. The authors show the evolution and current state of the field,
and draw attention to the taxonomy of flow objects and traffic classes. Four
challenges are discussed: 1) lack of common, representative traffic datasets
labelled with ground truth; 2) inadequacy of current methods to the three
trends in network protocols: encapsulation, encryption, and multi-channel
communication; 3) poor scalability of algorithms to high-bandwidth links;
4) lack of standard procedures and benchmarks for method evaluation. The
authors argue for further research on multi-classifier systems and for devel-
opment of open-source traffic classification tools.

3 Review of selected papers

In this section, we review selected works related to traffic classification. We
put our findings into four categories: 1) traffic classification, 2) detection of
a particular protocol, 3) obtaining ground truth data, and 4) related.

3.1 Traffic classification

In this category, we collect papers that describe algorithms for identifying
any network protocol, or at least a few protocols (e.g. group of P2P-TV
protocols). For instance, such algorithms can be deployed on a router to
provide statistics on the traffic passing through it.
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Figure 1: Feature extraction in the KISS algorithm: for each packet in an
80-packet window (a), the first 12 bytes of UDP payload are divided into 24
groups of 4 bits each (b). Number of occurrences of distinct values in given
group is counted for the whole packet window (c).

1) KISS: Stochastic Packet Inspection Classifier for UDP Traffic: The
work by A. Finamore et al. [15] published in 2010 (extends the original 2009
paper [25]) presents a payload inspection classifier for UDP traffic. The
authors exploit the fact that protocols running over UDP must implement
an application-specific header at the beginning of the packet payload, due
to stateless nature of UDP communication.

For each 80-packet window in a given flow, the KISS algorithm counts
occurrences of distinct 4-bit groups in the first 12 bytes of the packet payload;
see Fig. 1 for an illustration. For each of 24 groups, a χ2-like test is used in
order to measure the distance between distribution of observed values and
the uniform distribution, according to Equation 1:

Xi =

11112∑
v=00002

(Oiv − E)2

E
, (1)

where: Xi is the distance for group offset i, v is the value, Oiv is the number
of observed occurrences for value v on offset i, and E is the expected value
(E = 80

24
= 5). The symbols 00002 and 11112 represent binary numbers: 0

and 15 in decimal system, respectively.
Thus, a characterization of randomness in the application header is ob-

tained, in form of a 24-element feature vector. This vector is used in an
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SVM decision process, i.e. it is used for training and classification in a
typical manner.

The authors evaluated the algorithm on a ca. 100GB dataset of real
and testbed network traffic, obtaining respectively 99.6% and <1% of True
Positives and False Positives, on average.

2) K-Dimensional Trees for Continuous Traffic Classification: In an in-
teresting work published in 2010 by V. Carela-Español et al. [26], the authors
revisit the idea by L. Bernaille et al. [22] of early traffic classification by an-
alyzing the size and direction of the first few packets of a TCP connection.

However, in this new work the authors apply the K-dimensional trees
algorithm [27] instead, which resulted in relatively small times for training
and classification. The proposed system operates in real-time and can be
continuously retrained. A preliminary evaluation was performed, using a ca.
1TB dataset of 12 types of real network traffic.

3) Abacus: Accurate behavioral classification of P2P-TV traffic: In 2011,
P. Bermolen et al. [9] published an exhaustive work on a classifying P2P-TV
traffic, preliminarily introduced in [28].

The authors present a method that counts the number of packets received
by a given host from each of its peers. Histogram of packet counts received
in a 5-second window is used as a feature vector for an SVM classification
algorithm.

Bermolen et al. present an excellent experimental analysis of perfor-
mance, portability, and parameter sensitivity. The authors evaluated the
system on a ca. 26GB dataset of testbed P2P-TV traffic (SopCast, TVAnts,
PPLive, and Joost) and on a ca. 4GB of real “background” traffic: they
report 95% of True Positives and less than 0.1% of False Positives in the
worst case—for packets, bytes, and peers.

4) TCP Traffic Classification Using Markov Models: In a work published
in 2010 by G. Münz et al. [29], a lightweight method for classification of
TCP flows using observable Markov chains [30] is presented. The discretized
packet length, direction, and position within the flow are mapped to a state.
For each application of interest, a Markovian model is generated in the
training stage. During classification, the a-posteriori probability of observed
packets is calculated for each model, and the maximum value is chosen.

The authors performed experimental validation on a small dataset and
compared the results to the well-established work by L. Bernaille et al. [22];
however, these two methods are inherently different. The Markov chain
method yielded better stability of the results, with similar average precision
and recall values. The authors extended their method in [31] by introducing
a special “end of connection” Markov state, which improved the accuracy
(validated on a larger dataset).

5) Early Classification of Network Traffic through Multi-classification:
The work by A. Dainotti et al. [11] published in 2011 presents an innovative
approach of multi-classification: the traffic is simultaneously processed by
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an ensemble of several stand-alone classifiers, and the final result is obtained
using a decision combiner algorithm [32].

The authors connect eight stand-alone classifiers (see Table 1) using six
state-of-the-art combiners (see Table 2). Experimental validation on a 59GB
dataset of real traffic yielded the best accuracy for the BKS combiner and
an ensemble of 6 classifiers: J48, K-NN, R-TR, RIP, MLP, and PL.

The authors highlight that in case we limit feature extraction to just
the first few packets in a flow, their method brings significant performance
improvements, comparing to the best results of stand-alone classifiers work-
ing alone: for example, in case of just the first packet being used, a 20.8%
improvement. The authors chose to use the first 4 packets, obtaining the
final accuracy of 98.4%; supplementary metrics were not reported.

6) CUTE: Traffic Classification Using TErms: In 2012, S.H. Yeganeh
et al. published a paper [42] in which they propose a payload inspection
classifier that automatically finds protocol signatures.

For the training, the algorithm extracts common terms shared by flows
of a given protocol: it aligns the flows and finds all common substrings of at
least b bytes. Next, for each protocol, it assigns weights to terms, according
to Equation 2:

W p
t =

{
(

f tp∑
p∈P f

t
p
)ρ fpt ≥ T

0 fpt < T
, (2)

where fpt is the frequency of term t in protocol p, P is the set of all protocols,
and W p

t is the term weight; ρ and T are the algorithm parameters. Terms
that are unique to protocol have weights close to 1, whereas common terms
have weights close to 0.

During classification, for each protocol, the algorithm searches the packet
payload for the learned terms, and computes the average weight. The pro-
tocol with the maximum value is chosen as the target class.

Yeganeh et al. show by means of theoretical analysis and experimental
validation, that in case of pattern matching for traffic classification, occur-
rences of terms in network flows are more important than their relative
order. In practice this means that it is enough to use term sets instead of
lists: one can identify a certain protocol by checking for occurrence of terms
in any order. This makes CUTE inherently simpler and faster than similar
algorithms that employ term lists, e.g. LASER [43].

The authors used two traffic traces from Tier-1 ISPs for experimental
analysis, i.e. tuning the classification system and validating its accuracy.
They report precision and recall metrics above 90% for almost all protocols
considered in the experiment.
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Label Classifier (see [33,34]) Overall performance Selected?

J48 J48 Decision Tree 97.2% X
K-NN K-Nearest Neighbor 95.9% X
R-TR Random Tree 96.3% X
RIP Ripper 97.0% X
MLP Multi Layer Perceptron 82.3% X
NBAY Naive Bayes 43.7% -
PL PortLoad [35] 83.7% X
PORT Port number 15.6% -

Table 1: Stand-alone classifiers used in [11]. The “Overall performance”
column presents the overall classification accuracy, as reported by the au-
thors; the “Selected?” column indicates which classifiers were used in the
final system.

Label Combiner Reference
in [32]

Best perfor-
mance

NB Naive Bayes [36] pp. 126 93.5%
MV Majority Voting [37] pp. 112 90.8%
WMV Weighted Majority Voting [38] pp. 123 91.0%
D-S Dempster-Shafer [39] pp. 175 97.0%
BKS Behavior Knowledge Space [40] pp. 128 97.9%
WER Wernecke [41] pp. 129 97.9%

Table 2: Algorithms for combining pattern classifiers, as applied in [11].
The “Best performance” column gives classification accuracy for the best
selection of stand-alone classifiers working in an ensemble, as reported by
the authors (see Table 1).
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3.2 Single application detection

In this subsection, we put the algorithms that aim at single application or
certain traffic kind. For instance, such algorithms can be deployed on a
network firewall in order to block access to given service. We maintain the
numbering of papers for easy referring in Table 3.

7) Tunnel Hunter: Detecting application-layer tunnels with statistical
fingerprinting: In a paper published in 2009 [44], M. Dusi et al. present a
reliable method for detecting HTTP and SSH tunnels.

The algorithm is trained with legitimate (non-tunneled) HTTP and SSH
traffic. Each flow is characterized by a signature consisting of packet size,
inter-arrival time, and arrival order. During classification, a flow “anomaly
score” is computed by comparing the flow signature to fingerprints of legit-
imate traffic. If the value is above a certain level, the flow is considered as
carrying tunneled traffic. The authors claim nearly 100% completeness and
accuracy (verified experimentally).

8) Skype-Hunter: A real-time system for the detection and classification
of Skype traffic: The paper by D. Adami et al. published in 2012 [45]
introduces a novel method for identification of the Skype protocol.

The authors present a detailed, packet-level analysis of the Skype traffic
and propose a relevant detection algorithm that combines signature-based
and statistical procedures. The method is experimentally validated on sev-
eral datasets—compared to standard statistical classifiers and to a state-of-
the-art Skype classifier [46], it yielded better performance results.

3.3 Obtaining ground truth data

Below we describe the papers on datasets for verifying the accuracy of clas-
sification methods.

In a typical scenario, an author of a new method will work on a trace
of network traffic while developing the algorithm. The traffic composing
the trace needs to be representative for the scope of interest of a particular
research effort. The dataset should also indicate the real application that
generated each flow in the dataset, so the researcher is able to compare the
results of the algorithm with the right answer: this information is called
ground truth.

9) GT: picking up the truth from the ground for Internet traffic: In a 2009
paper published by F. Gringoli et al. [47], the authors present a distributed
system for capturing Internet traffic in a computer network. The system
keeps the names of applications that generated the traffic.

A special software agent “gt” is installed on each machine taking part
in the experiment. The agent periodically queries the operating system for
a list of opened network sockets and the names of applications that own
them. For each socket, it stores a piece of information with current time-
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stamp, local and remote IP address and port number, transport protocol,
and application name. At the same time, a standard packet sniffer is run
on the gateway router, so that all the traffic coming from and into the local
network is captured.

Finally, a post-processing tool “ipclass” is run. The tool connects the
socket information collected by gt with the traffic captured on the router. As
the result, a traffic trace file annotated with ground truth is produced. The
authors validated the method on a 218GB dataset. For the completeness
metric, they report more than 99% of bytes and 95% of flows.

10) Quantifying the accuracy of the ground truth associated with Internet
traffic traces: In 2011 M. Dusi et al. [48] published a paper that compares
their gt tool [47] to traditional port- and DPI-based ground truth establish-
ment methods.

Basing on evaluation on a ca. 200GB dataset, the authors claim that—
depending on the protocols composing a trace—ground truth information
can be incorrect for up to 91% bytes for port-based and 26% for DPI-based
methods. The authors speculate that the error one might commit while
applying these well-established methods to publicly available anonymized
traces is significant, especially for modern traffic like Streaming, Skype, or
P2P.

11) Tracedump: A Novel Single Application IP Packet Sniffer: A pa-
per by P. Foremski published in 2012 [49] introduces a packet sniffer that
captures traffic of a single Linux process only. This solves the problem of
ground truth accuracy, as the application name is immediately known.

The author explains implementation of a single-process packet sniffer and
provides an architectural view on the proposed solution. The “tracedump”
utility captures all application traffic in real-time, including DNS traffic. A
short evaluation on BitTorrent traffic is presented.

The “tracedump” tool can run a computer program in a fully controlled
manner—for instance, Graphical User Interface (GUI) testing tools can be
applied to create a kind of specialized traffic generator (preliminary results
available at [50]).

3.4 Related works

In the last subsection, we present works that analyze IP traffic and are
similar to traffic classification.

12) Taking a Peek at Bandwidth Usage on Encrypted Links: In a 2011
paper [51], M. Dusi et al. present a simple regression-tree-based algorithm
that monitors the amount of data that protocols transmit over encrypted
tunnels (incl. IPSec).

During the training phase, both the cipher- and plain-text transmissions
are visible to the algorithm; the plain-text is used for ground truth infor-
mation. As traffic features, the authors employed probability mass function

9



of packet sizes, and statistics related to changes in packet direction. During
the operation phase, the algorithm extracts flow features each few seconds,
and applies a regression tree algorithm in order to give estimates on the
traffic carried within the tunnel.

The authors evaluated their method on a ca. 50GB dataset and reported
an acceptable accuracy: the performance depends on the differences in the
networks used for training and testing.

13) DNS to the Rescue: Discerning Content and Services in a Tangled
Web: In 2012, I. Bermudez et al. published a paper on inferring Internet
traffic by analyzing its DNS context [10]. The work introduces “DN-Hunter”,
a system that tags traffic flows with their associated domain name, based
on the fact that each new flow is anticipated by a DNS query.

The system consists of two modules: a flow sniffer, which reconstructs
traffic flows, and a DNS resolver, which maintains mapping between clients,
domains, and servers. The authors verified that flow tagging can be ac-
complished in most cases and could not be replaced by making a reverse
DNS lookup or inspecting TLS certificates—this would fail in 94% or 86%,
respectively. The key property of this novel method is that it can identify
traffic before the actual flow starts.

Using capabilities of DN-Hunter, the authors provide a detailed analysis
of Content Delivery Networks (CDNs) in 5 datasets of total 64 million flows,
covering thousands of ISP customers in US and Europe. Analysis of real
traffic revealed domains handled by hundreds of servers that change with
time. The authors discovered a diurnal pattern of more machines during late
evenings; a similar phenomenon was noticed for CDNs and their domains.
For an 18-day observation period about 100,000 new domains emerged each
day, which reflects the rapid growth of the Internet.

DN-Hunter can map distribution of particular content across CDNs—the
authors found that LinkedIn was hosted by Edgecast (59% of flows), Aka-
mai (17%), CDNetworks (3%), and on own servers (22%). The system can
also reveal the domains of a specific CDN: top three domains provided by
Amazon EC2 in Europe were cloudfront.net (20%), playfish.com (16%), and
sharethis.com (5%). Finally, DN-Hunter can tell the most popular services
delivered on a given IP port number—for port 25 the authors observed ser-
vice tags of “smtp”, “mail”, “mxN”, and several others. Interestingly, they
also identified several BitTorrent trackers running on the Google Appspot
service.

4 Discussion

1. There are many ways to classify the traffic. Each work reviewed
in sections 3.1 and 3.2 presents a different approach to classification:
analysis of packet count, length, payload, etc.—see Table 3 for a sum-
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mary.

We speculate that each modern Internet protocol exhibits so many
phenomena that it has plenty of observable traffic characteristics that
can reveal its generating application. Moreover, A. Dainotti et al. in
[11] (sect. 3.1) proved that it is possible to combine multiple different
classifiers into one system that unveils high performance.

We argue that:

(a) there are many traffic features yet to be found (anticipated e.g.
by [9, 10,15]);

(b) traffic classification algorithms can be combined so they comple-
ment each other (e.g. [15] for UDP and [31] for TCP traffic);

(c) there is much room for improvement in the design of traffic clas-
sifiers that analyze several kinds of traffic features at the same
time, i.e. multi-level traffic classifiers (e.g. [6, 11]).

2. Classification methods need thorough validation. New services
appear rapidly on the Internet, and the application protocols get more
sophisticated [7]—modeling of new kinds of traffic gets harder. For
instance, at the time of this writing, there is no adequate traffic model
for the SPDY [54] protocol, introduced by Google and deployed for its
popular “Gmail” service.

Consequently, robust traffic classification methods need thorough ex-
perimental validation, as purely theoretical approach is insufficient. A
certain sign of a high-quality paper is a detailed section on validation,
employing an up-to-date traffic trace.

We give our recommendations for the validation of classification meth-
ods:

(a) usage of large, representative, and geographically diverse datasets
with relevant amounts of background traffic (e.g. [8, 15]);

(b) presentation of the results in terms of well-established and com-
plementary performance metrics—e.g. the recall metric together
with precision, or True Positives together with False Positives
(e.g. [15, 31]);

(c) analysis of parameter sensitivity of the algorithm (e.g. [9, 42]).

3. The problem of common traffic datasets is still unsolved. Sev-
eral respected scientists demanded publication of common, packet-
level traffic datasets labeled with ground truth—e.g. [55] in 2007 and
[7] recently. This would enable systematic and fair comparison of clas-
sification methods.
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Paper Traffic features Experimental dataset

1) Finamore et al.
[15]

For 80-packet windows:
amount of randomness in
the first 12 bytes of pay-
load

100GB of real and
testbed traffic (P2P-TV,
Skype)

2) Carela-Español
et al. [26]

Size of the first few pack-
ets; port numbers

<1TB of real traffic from
CoMo-UPC [52]; ground
truth set with DPI

3) Bermolen et al.
[9]

Histogram of packet
counts received from
each peer, in a time
window (5s)

26GB of testbed traffic
from 30 peers; <4GB of
real traffic without P2P-
TV

4) Münz et
al. [29]

For the first few TCP
packets: payload size,
packet direction, position
in stream

Self-made traces: 300
connections for training,
500 for testing

5) Dainotti et al.
[11]

Various Self-made 59GB trace of
real traffic (Oct 2009);
ground truth set with
DPI

6) Yeganeh et al.
[42]

Existence of precom-
puted terms in packet
payload

Two 30-minute traces
from tier-1 ISPs on dif-
ferent continents; no en-
crypted flows

7) Dusi et al. [44] Packet size and loga-
rithm of inter-arrival
time (quantized values)

Self-made HTTP and
SSH traffic (legitimate
and tunneled)

8) Adami et al.
[45]

Packet size, packet pay-
load (signatures), inter-
arrival times

Self-made dataset, Tstat
Skype traces [53], and
DARPA dataset

12) Dusi et
al. [51]

For time-windows: his-
togram of packet sizes;
vector of packet counts
and sizes until change
in transmission direction
occurs

Self-made, real traffic:
36GB captured with “gt”
[47] (Oct 2009), 10GB
with ground truth set us-
ing DPI (Jul 2010)

13) Bermudez et
al. [10]

DNS response received
within a time-window
preceding the IP flow

5 diverse sets of real traf-
fic from EU and US; 64
million TCP flows, al-
most 2 days of traffic

Table 3: Summary of the reviewed papers: traffic features and datasets used
for experimental validation
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The problem still remains largely unsolved. Some authors published
their datasets, but none of them satisfies all of the postulated re-
quirements (a short list available at [56]). Others, like CAIDA [57]
or MAWI [58] published datasets without ground truth and packet
payload, which limits their usability.

However, authors of the studies referenced in section 3.3 made ground
truth data collection simpler and more comprehensible. Particularly,
the “gt” [47] software agent seems to be the candidate for a standard
ground truth tool for current and future research on Internet traffic.

5 Conclusions

In this paper, we reviewed 13 significant papers on traffic classification and
related matters, published during 2009-2012. We presented the review in 4
categories: general traffic classification (sect. 3.1), single protocol detection
(sect. 3.2), the ground truth problem (sect. 3.3), and related works (sect.
3.4). We showed diversity in methods for characterizing modern IP traffic
and discussed a few important issues, giving our recommendations. We also
presented a succinct “review of reviews” in traffic classification in section 2.

It is almost a decade since first major publications on traffic classification
appeared [13], but the authors of the reviewed papers proved that it is still
possible to find new algorithms [10,15], or significantly improve the existing
ones [26]. In order to classify an IP flow, one can choose to either focus on a
specific traffic feature (packet counts [9], lengths [26], payload characteristics
[15, 42], etc.), use many features at once (e.g. [31, 45]), or combine several
approaches in a multi-classifier system ( [11] in sect. 3.1). Especially for the
latter technique we speculate a vast space for improvement.

Classification methods need to be verified on real IP traffic. The prob-
lem of obtaining adequate traces labeled with ground truth (introduced in
sect. 3.3) is still largely unsolved. This limits systematic and fair com-
parison of existing methods: there are no “reference benchmarks” in traffic
classification. Besides, the authors of [48] suggest that there may be a signif-
icant error in self-made traffic traces anyway. Two utilities—“gt” [47] and
“tracedump” [49]—can be applied to assure the accuracy of ground truth
data.

Let us conclude with an observation that we are able to tell things apart
if we can see the differences among them; the more one can see, the more
has he the power to discriminate. Our paper showed diversity in methods
for classifying IP traffic—in our opinion, an interesting direction for future
research on traffic classification.
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