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Abstract. The Internet transports data generated by programs which
cause various phenomena in IP �ows. By means of machine learning
techniques, we can automatically discern between �ows generated by
di�erent tra�c sources and gain a more informed view of the Internet.
In this paper, we optimize Waterfall, a promising architecture for cascade
tra�c classi�cation. We present a new heuristic approach to optimal
design of cascade classi�ers. On the example of Waterfall, we show how
to determine the order of modules in a cascade so that the classi�cation
speed is maximized, while keeping the number of errors and unlabeled
�ows at minimum. We validate our method experimentally on 4 real
tra�c datasets, showing signi�cant improvements over random cascades.
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1 Introduction

Internet tra�c classi�cation is a well-known problem in computer networks.
Since introduction of Peer-to-Peer (P2P) networking and encrypted protocols
we have seen a rapid growth of classi�cation methods that apply statistical
analysis and machine learning to various characteristics of IP tra�c, e.g. [1�3].
Survey papers list many existing methods grouped in various categories [4, 5],
yet each year still brings new publications in this �eld. Some authors suggested
connecting several methods in multi-classi�er systems as a future trend in tra�c
classi�cation [6,7]. For example, in [8], the authors showed that classi�er fusion

can increase the overall classi�cation accuracy. In [9], we proposed to apply the
alternative of classi�er selection instead, showing that cascade classi�cation can
successfully be applied to tra�c classi�cation. This paper builds on top of that.

In principle, cascade tra�c classi�cation works by connecting many classi�ers
in a single system that evaluates feature vectors in a sequential manner. Our
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Fig. 1. The Waterfall architecture. A �ow enters the system and is sequentially exam-
ined by the modules. In case of no successful classi�cation, it is rejected.

research showed that by using just 3 simple modules working in a cascade, it
is possible to classify over 50% of IP �ows using the �rst packet of a network
connection. We also showed that by adding more modules one can reduce the
total amount of CPU time required for system operation. However, the problem
still largely unsolved is how to choose from a possible large pool of modules, and
how to order them properly so that the classi�cation performance is maximized.
In this paper, we propose a solution to this problem.

The contribution of our paper is as follows:
1. We propose a new solution to the cascade optimization problem, tailored to

tra�c classi�cation (Sect. 3).
2. We give a quick method for estimating performance of a Waterfall system

(Sect. 3).
3. We experimentally validate our proposal on 4 real tra�c datasets, demon-

strating that our algorithm works and can bring signi�cant improvements to
system performance (Sect. 4).
The rest of the paper is organized as follows. In Sect. 2, we give background on

the Waterfall architecture and on existing methods for building optimal cascade
classi�ers. In Sect. 3, we describe our contribution, which is validated experi-
mentally in Sect. 4. Sect. 5 concludes the paper.

2 Background

We introduced cascade tra�c classi�cation in [9]. Our Waterfall architecture
integrates many di�erent classi�ers in a single �chain� of modules. The system
sequentially evaluates module selection criteria and decides which modules to
use for a given classi�cation problem x. If a particular module is selected and
provides a label for x, the algorithm �nishes. Otherwise, the process advances to
the next module. If there are no more modules, the �ow is labeled as �Unknown�.
The algorithm is illustrated in Fig. 1. We refer the reader to [9] for more details.
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Cascade classi�cation is a multi-classi�er machine learning system, which
follows the classi�er selection approach [10]. Although presented in 1998 by E.
Alpaydin and C. Kaynak [11], so far few authors considered the problem of
optimal cascade con�guration that would match the Waterfall architecture. In a
2006 paper [12], K. Chellapilla et al. propose a cascade optimization algorithm
that only updates the rejection thresholds of the constituent classi�ers. The
authors apply an optimized depth �rst search to �nd the cascade that satis�es
given constraints on time and accuracy. However, comparing with our work,
the system does not optimize the module order. In another paper published in
2008 [13], A. Sherif proposes a greedy approach for building cascades: start with
a generic solution and sequentially prepend a module that reduces CPU time.
Comparing with our work, the approach does not evaluate all possible cascade
con�gurations and thus can lead to suboptimal results.

In this paper, we propose a new solution to the cascade classi�cation prob-
lem, which is better suited for tra�c classi�cation than [12] and [13]. However,
we assume no con�dence levels on the classi�cation outputs, thus we do not
consider rejection thresholds as input values to the optimization problem. One
can consider the same classi�er parametrized with various thresholds as a set of
separate modules available to build the cascade from.

3 Optimal classi�cation

Let us consider the problem of optimal cascade structure: we have n modules
in set E that we want to use for cascade classi�cation of IP �ows in set F in
an optimal way. In other words, we need to �nd a sequence of modules X that
minimizes a cost function C:

E = {1, . . . , n}, (1)

X = (x1, . . . , xm) m ≤ n, xi ∈ E, ∀i 6=j xi 6= xj , (2)

C(X) = f(tX) + g(eX) + h(uX). (3)

The terms tX , eX , and uX respectively represent the total amount of CPU time
used, the number of errors made, and the number of �ows left unlabeled while
classifying F with X. The terms f , g, and h are arbitrary real-valued functions.
Because m ≤ n, some modules may be skipped in the optimal solution. Note
that uX does not depend on the order of modules, because unrecognized �ows
always traverse till the end of the cascade.

3.1 Proposed solution

To �nd the optimal cascade, we propose to quickly check all possible X. We
propose an approximate method, because for an accurate method one would
need to run the full classi�cation process for each X, i.e. experimentally evaluate
all permutations of all combinations in E. This would take S experiments, where

S =

n∑
i=1

n!

(n− i)!
, (4)
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Fig. 2. Measuring performance of module x ∈ E.

which is impractical even for small n. On another hand, fully theoretical models
of the cost function seem infeasible too, due to the complex nature of the cascade
and module inter-dependencies.

Thus, we propose a heuristic solution to the cascade optimization problem.
The algorithm has two evaluation stages: A) Static: classify all �ows in F using
each module in E, and B) Dynamic: �nd the X sequence that minimizes C(X).

A. Static evaluation. In every step of stage A, we classify all �ows in F
using single module x, x ∈ E. We measure the average CPU time used for �ow

selection and classi�cation: t
(x)
s and t

(x)
c . We store each output �ow in one of

the three outcome sets, depending on the result: F
(x)
S , F

(x)
O , or F

(x)
E . These sets

hold respectively the �ows that were skipped, properly classi�ed, and improperly

classi�ed. Let us also introduce F
(x)
R :

F
(x)
R = F \ (F (x)

S ∪ F
(x)
O ∪ F

(x)
E ), (5)

the set of rejected �ows. See Fig. 2 for an illustration of the module measurement
procedure. As the result of every step, the performance of module x on F is fully
characterized by a tuple of P (x):

P (x) = ( t(x)s , t(x)c , F
(x)
S , F

(x)
O , F

(x)
E ). (6)

Finally, after n steps of stage A, we obtain n tuples: the input to stage B.
B. Dynamic evaluation. Having all of the required experimental data, we

can quickly estimate C(X) for arbitrary X. Because f , g, and h are used only
for adjusting the cost function, we focus on their arguments: tX , eX , and uX .

Let X = (x1, . . . , xi, . . . , xm) represent certain order and choice of modules,
and Gi represent the set of �ows entering the module number i (G1 = F ). We
estimate the cost factors using the following procedure:

tX ≈
m∑
i=1

|Gi| · t(xi)
s + |Gi \ F (xi)

S | · t(xi)
c , (7)

eX =

m∑
i=1

|Gi ∩ F
(xi)
E |, (8)

uX = |Gm+1|, (9)
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where

Gi+1 = Gi \ (F
(xi)
O ∪ F

(xi)
E ) i ≤ m. (10)

The di�erence operation in Eq. 10 is crucial, because we need to remove the
�ows that were classi�ed in the previous step. In stage A, our algorithm evaluates
static performance of every module, but in stage B we need to simulate cascade
operation. The di�erence operator in Eq. 10 connects the static cost factors
(tX , eX , uX) with the dynamic e�ects of cascade classi�cation.

Module performance depends on its position in the cascade because preceding
modules alter the distribution of tra�c classes in the �ows conveyed onward. For
example, a module designed for P2P tra�c running before a port-based classi�er
can improve its accuracy, by removing the �ows that run on non-standard ports
or abuse the traditional port assignments.

3.2 Discussion

In our optimization algorithm we simpli�ed the original problem to n experi-
ments and several operations on �ow sets. We can speed up the search for the
best X because the algorithm is additive:

C(X + xi) = C(X) + C(xi). (11)

Thus, we can apply the branch and bound algorithm [14].
Note that the results depend on F : the optimal cascade depends on the

protocols represented in the tra�c dataset, and on the ground-truth labels. The
presented method cannot provide the ultimate solution that would be optimal
for every network, but it can optimize a speci�c cascade system working in a
speci�c network. In other words, it can reduce the amount of required CPU
power, the number of errors, and the number of unlabeled �ows, given a set of
modules and a set of �ows. We evaluate this issue in Section 4 (Tab. 2).

We assume that the �ows are independent of each other, i.e. labeling a par-
ticular �ow does not require information on any other �ow. In case such infor-
mation is needed, e.g. DNS domain names for the dnsclass module, it should
be extracted before the classi�cation process starts. Thus, tra�c analysis and
�ow classi�cation must be separated to uphold this assumption. We successfully
implemented such systems for our DNS-Class [15] and Mutrics [9] classi�ers.

In the next Section, we experimentally validate our method and show that it
perfectly predicts eX and uX , and approximates tX properly (see Fig. 3). The
simulated cost accurately follows the real cost, hence we argue that our proposal
is valid and can be used in practice. In the next Section, we analyze the trade-o�s
between speed, accuracy, and ratio of labeled �ows (Fig. 4), but the �nal choice
of the cost function should depend on the purpose of the classi�cation system.

4 Experimental validation

In this Section, we use real tra�c datasets to demonstrate that our method is
e�ective and gives valid results. We ran 4 experiments: 1) comparing simulated
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Dataset Start Duration Src. IP Dst. IP Packets Bytes Avg. Util Avg. Flows
(/5 min.) Payload

Asnet1 2012-05-26 17:40 216 h 1,828 K 1,530 K 2,525 M 1,633 G 18.0 Mbps 7.7 K 92 B

Asnet2 2013-01-24 16:26 168 h 2,503 K 2,846 K 2,766 M 1,812 G 25.7 Mbps 12.0 K 84 B

IITiS1 2012-05-26 11:19 220 h 32 K 46 K 150 M 95 G 1.0 Mbps 753.7 180 B

Unibs1 2009-09-30 11:45 58 h 27 1 K 33 M 26 G 0.9 Mbps 111.7 0 B

Table 1. Datasets used for experimental validation.

tX , eX , and uX to real values, which proves validity of Eqs. 7-9; 2) analyzing
the e�ect of f , g, and h on the results, which proves that parameters in�uence
the optimization process properly; 3) optimizing the cascade on one dataset and
testing it on another dataset, which veri�es robustness in time and space; 4)
comparing optimized cascades to random con�gurations, which demonstrates
that our work is meaningful.

We used 4 real tra�c datasets, as presented in Table 1. Datasets Asnet1
and Asnet2 were collected at the same Polish ISP company serving <500 users,
with an 8-month time gap. Dataset IITiS1 was collected at an academic net-
work serving <50 users, at the same time as Asnet1. Dataset Unibs1 was also
collected at an academic network (University of Brescia1), but a few years earlier
and without packet payloads. We established ground-truth using Deep Packet In-
spection (DPI) and trained the modules using 60% of �ows chosen randomly�as
described in our original work [9]. The remaining �ows were used for evaluating
our proposal. We used the following Waterfall modules: dstip, dnsclass [15],
npkts, port, and portsize. We handled Unibs1 di�erently, because the dataset
has no packet payloads and has all IP addresses anonimized: we used the stats
module instead of dnsclass.

Experiment 1 ) In the �rst experiment, we compare simulated cost factors
with the reality. We randomly selected 100,000 �ows from each dataset and ran
the static evaluation on them. Next, we generated 100 random cascades, and
for each cascade we ran real classi�cation and the dynamic evaluation stage of
our optimization algorithm. As a result, we obtained pairs of real and estimated
values of tX , eX , and uX for same X values. The results for tX are presented
in Fig. 3. For eX and uX we did not observe a single error, i.e. our method
perfectly predicted the real values. For CPU time estimations, we see a high
correlation of 0.95, with little under-estimation of the real value. For all datasets,
the estimation error was below 20% for majority of evaluated cascades (with
respect to the real value). The error was above 50% only for 5% of evaluated
cascades. We conclude that in general our method properly estimates the cost
factors and we can use it to simulate di�erent cascade con�gurations.

Experiment 2 ) In our second experiment, we want to show the e�ect of tuning
the cost function for di�erent goals: minimizing the computation time, minimiz-
ing errors, and labeling as many �ows as possible. We chose the following cost

1 Downloaded from http://www.ing.unibs.it/ntw/tools/traces/
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Fig. 3. Experiment 1. Estimated classi�cation time vs real classi�cation time. Dashed
line shows least-squares approximation, the correlation coe�cient is 0.95.

function:

C(X) = f(tX) + g(eX) + h(uX) = taX + ebX + uc
X . (12)

Next, we separately varied the a, b, c exponents in range of 0-10, and observed
the performance of the optimal cascade found by applying such cost function.
We ran the experiment for Asnet1, Asnet2, and IITiS1. In Fig. 4, we present
the results: dependence of CPU time, number of errors, number of unlabeled
�ows, and module count on f(tX), g(eX), and h(uX). As expected, higher f
exponent leads to faster classi�cation, with fewer number of modules in the
cascade (more unclassi�ed �ows) and usually less errors. Optimizing for accuracy
leads to reduction of errors and CPU time, at the cost of higher number of �ows
left without a label. Note that we observed more errors than in the case of
time optimization�probably because the number of errors was low, thus the
g exponent had less impact on such values. Finally, if we choose to classify as
much tra�c as possible, the system will use all available modules, at the cost of
increasing the CPU time. We conclude that our proposal works, i.e. by varying
the parameters we optimize the cascade for di�erent goals.

Experiment 3 ) In the third experiment, we verify if the result of optimiza-
tion is stable in time and space, i.e. if the optimal cascade stays optimal with
time and changes of the network. We ran optimization for 3 datasets (all �ows
in Asnet1, Asnet2, and IITiS1), obtaining di�erent cascade con�guration for
each dataset. Next, we evaluated these con�gurations on the other datasets, i.e.
Asnet1 on Asnet2 and IITiS1, etc. We measured the increase in the value of
the cost function C(X) and compared it with the original value. Table 2 presents
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Fig. 4. Experiment 2. Optimizing the cascade for di�erent goals: best classi�cation
time (a exponent), minimal number of errors (b exponent), and the lowest number of
unlabeled �ows (c exponent): the plot shows the averages for 3 datasets.

the results. We see that our proposal yielded results that are stable in time: the
cascades found for Asnet1 and Asnet2, which are 8 months apart, are very
similar and can be exchanged with little decrease in performance. However, the
cascades found for Asnet1 and Asnet2 gave 7% and 8% decrease in perfor-
mance compared with IITiS1. We conclude that optimization results are quite
speci�c to the network, but also stable in time, for the evaluated datasets.

Experiment 4 ) In our last experiment, we compare our proposal with random
choice of the modules, i.e. a situation in which we have a possibly large number
of �black box� modules to build the cascade from. For example, we could have
a large number of npkts modules trained on di�erent �ow samples, and with

Reference
Test dataset

Asnet1 Asnet2 IITiS1

Asnet1 portsize, dstip, dnsclass, npkts, port - 0.46% 6.54%

Asnet2 dstip, dnsclass, portsize, npkts, port 0.49% - 8.01%

IITiS1 dnsclass, port, dstip, portsize, npkts 0.04% 0.03% -

Table 2. Experiment 3. Optimization stability: increase in the cost C(X), depending
on the reference dataset used for determining the optimal cascade.
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Dataset CPU time Errors Unknown flows

Asnet1
Random: 23.7 0 2,750

Optimal: 7.6 0 26

Improvement: 68% 0% 99%

Asnet2
Random: 34.5 26.4 10,350

Optimal: 28.4 15.0 363

Improvement: 18% 43% 96%

IITiS1
Random: 28.5 0 9,203

Optimal: 12.9 0 1,327

Improvement: 55% 0% 86%

Unibs1
Random: 6.7 25.8 356

Optimal: 1.6 20.0 267

Improvement: 77% 23% 25%
Average improvement: 55% 17% 77%

Table 3. Experiment 4. Average improvements compared to random cascade selection.
We evaluated 100 random cascades on 100,000 random �ows for each of 4 datasets.

di�erent parameters. We used the data collected in Experiment 1 (100,000 �ows
and 100 random cascades for each of 4 datasets) and calculated the average tX ,
eX , and uX values. Next, we run our optimization algorithm on the same 100,000
�ows for each dataset and measured the improvements with respect to the av-
erage performance of random cascades. We used the cost function given in Eq.
12, for a = 0.95, b = 1.75, and c = 1.20. In Tab. 3, we present obtained results:
in every case, our algorithm optimized the classi�cation system to work better,
signi�cantly reducing the amount of CPU time required for operation. Thus, we
conclude that our work is meaningful and can help a network administrator to
con�gure a cascade classi�cation system properly.

5 Conclusions

In this paper, we presented a new method for optimizing cascade classi�ers,
on the example of the Waterfall tra�c classi�cation architecture. The method
evaluates the constituent classi�ers and quickly simulates cascade operation in
every possible con�guration. By searching for the cascade that minimizes a cus-
tom cost function, the method �nds the best con�guration for given parameters,
which corresponds to minimizing required CPU time, number of errors, and
number of unclassi�ed IP �ows. We experimentally validated our proposal on 4
real tra�c datasets, demonstrating method validity, e�ectiveness, stability, and
improvements with respect to random choices.

Not only does our proposal apply to tra�c classi�cation, but it can be also
applied in the �eld of machine learning (for multi-classi�er systems). However,
our approach does not consider rejection thresholds of the classi�ers, which is
a certain limitation for application in other �elds. We release an open source
implementation of our proposal as an extension to the Mutrics classi�er.2

2 See https://github.com/iitis/mutrics/tree/bks
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