
SILESIAN UNIVERSITY OF TECHNOLOGY

FACULTY OF AUTOMATIC CONTROL, ELECTRONICS AND

COMPUTER SCIENCE

Master thesis

Statistical, real-time classification of IP traffic in Linux operating system

Author: Paweł Foremski

Supervisor: dr inż. Arkadiusz Biernacki

Gliwice, September 2011

Table of Contents

1. INTRODUCTION ...5

1.1. The problem of Internet traffic classification...6

1.2. Thesis goals..9

1.3. Review of existing solutions ...10

1.3.1 Simple methods..10

1.3.2 Deep Packet Inspection..11

1.3.3 Modern approaches..11

1.4. Thesis contents...13

2. SYSTEM DESCRIPTION...15

2.1. Main algorithm...16

2.1.1 Feature extraction...17

2.1.2 Decision process..18

2.1.3 Modifications...18

2.2. System architecture..20

2.2.1 Signature database...21

2.2.2 Training signatures and the SVM model...21

2.2.3 Traffic sources...22

2.2.4 Endpoint table..22

2.2.5 Feature extraction and the decision process...23

2.2.6 Classification results..23

2.3. Methodology..23

3. IMPLEMENTATION..25

3.1. Architecture..26

3.2. External libraries and facilities...27

3.3. Main program: the libspi library..28

3.3.1 File list...28

1

3.3.2 Data structures and variables...29

3.3.3 Control flow and events...35

3.3.4 Application Programming Interface..40

3.4. Front-end: the spid program...40

3.4.1 File list...40

3.4.2 Data structures...41

3.4.3 Control flow and communication with libspi..41

3.4.4 User interface...43

4. EVALUATION..45

4.1. Datasets..46

4.2. Results..47

4.2.1 Test 1: performance vs. training set size..47

4.2.2 Test 2: overall system performance...49

4.2.3 Test 3: unknown protocol detection...50

4.2.4 Test 4: processing speed..51

4.3. Discussion..53

4.3.1 Test 1..53

4.3.2 Test 2..53

4.3.3 Test 3..53

4.3.4 Test 4..54

5. CONCLUSIONS..55

6. SUMMARY...56

7. APPENDIX: IMPLEMENTATION DETAILS...57

7.1. libspi data structures...57

7.1.1 Main structure: struct spi...57

7.1.2 Internal events: struct spi_subscribers, spi_event_cb_t and struct spi_event. .58

7.1.3 IP traffic: struct spi_source and struct spi_pkt...59

7.1.4 Endpoints: struct spi_ep...60

7.1.5 Signatures: struct spi_signature...61

2

7.1.6 Classification results: struct spi_classresult...61

7.1.7 Performance evaluation: struct spi_stats..61

7.1.8 KISS algorithm: struct kissp..62

7.1.9 Complex decision process: struct verdict and struct ewma_verdict................62

7.2. libspi Application Programming Interface...63

7.3. spid data structures...64

7.4. spid data formats..65

7.4.1 Command-line source specification format...65

7.4.2 Packet trace index file format..66

7.4.3 Signature database file format...66

7.4.4 Endpoint classification output format..67

7.4.5 Performance metrics output format...68

8. LITERATURE...69

9. SUMMARY IN POLISH...71

3

4

1.INTRODUCTION

1. INTRODUCTION

The Internet has been constantly evolving since its inception. For more than a decade

it has been growing in capacity and versatility with a great pace, often requiring the

Internet Service Providers to update and extend their infrastructure in a timely manner.

These changes are connected with the inventions of new kinds of computer software,

which in turn generate new types of network traffic. However, the fundamental protocol of

the Internet – the IP protocol – does not provide a robust and universal mean to

differentiate one traffic type from another. Thus, identification of a particular application in

Internet transmissions is not a trivial task, yet it is very important.

For instance, a typical Internet end-user demands a safe and fast Internet access. An

Internet Service Provider which is to fulfil such a requirement must be able to monitor the

traffic for potential threats and to impose a proper prioritization on the traffic. Moreover,

there are political and research organizations which monitor the global Internet. Observing

the share of P2P traffic in Internet transmissions of a particular country could reveal trends

in its society. Work in these areas cannot be done without a reliable source of information.

A fundamental question remains: given an Internet transmission, what is the name of

application that produced it? This is the problem of traffic classification.

This thesis proposes a practical implementation of a possible solution to this problem

and presents its performance evaluation results.

This chapter introduces the problem of traffic classification (section 1.1), reviews its

existing solutions (section 1.3), and formulates the thesis goals (section 1.2).

5

INTRODUCTION

1.1.The problem of Internet traffic classification

Communication in the Internet follows the Internet Protocol (IP) [RFC791]. Basically,

on top of IP, there are User Datagram Protocol (UDP) [RFC768] and Transmission

Control Protocol (TCP) [RFC793], both of which being Transmission Protocols (TP). A

single IP transmission connects two application processes, often running on two distant

hosts (general concept presented on Fig. 1.1). Between these two hosts there is the Internet,

comprised of intermediary hosts, called routers.

The host Operating System (OS) provides an Application Programming Interface

(API), through which a process can send (and receive) data in a simple manner, basically

of arbitrary length and format.

6

Fig. 1.1: General concept of Internet communication. Three processes (HTTP,
Skype and DNS) running on “Client” host contact their respective
counterparts running on remote “Server” host using the Internet.

1.1.The problem of Internet traffic classification

This API facility is thus a kind of a proxy between the process and the Internet. It

handles the operation of putting the data into well-formed IP packets, which often means

dividing the stream of application data into many IP packets. This operation has the

following implications, depicted on Fig. 1.2:

1. Application identity is lost.

2. Packets can go different routes.

Moreover, at a single time instant, a router has direct access only to the contents of a

single packet. This all leaves Internet operators with very little information on the traffic

passing through their infrastructure. For this reason, a useful approach is to look at the

traffic from a more distant perspective.

The IP protocol defines a header part in its packet, having several fields, including:

1. source IP address,

2. destination IP address,

3. desired transport protocol.

7

Fig. 1.2: Process data leaving the host boundary. Data of a single Skype
process is divided into IP packets and enters the Internet using two
different routes.

INTRODUCTION

Similarly, Transport Protocol header carries:

4. source port number,

5. destination port number.

A group of packets having the same tuple of fields {1, 2, 3, 4, 5} is called a flow. It has

a useful property that each packet in a flow belongs to the same transmission and thus was

generated by the same application (and by the same two processes). Analysis of flows is a

convenient way of looking at IP traffic, which allows to gather some statistical

characteristics, like the average packet size, flow duration, bit rate, etc. However,

application names are still unknown, as presented on Fig. 1.3.

Finally, the problem of Internet traffic classification can be formulated by the

question: given IP packets, what is the identity of application that sent them?

An answer to this question is called a classification verdict. Usually, it is issued for a

whole flow, which indirectly leads to classification of single IP packets. However, limited

solutions to direct classification of single packets also exist (see 1.3.1). The concept of

application identity is quite broad. It can span from rough application type (e.g.

8

Fig. 1.3: Groups of packets collected in flows. The identity of applications is
still unknown.

1.1.The problem of Internet traffic classification

“streaming”) to detailed program name and version (e.g. “Skype v. 2.5.3”), and it is

directly connected with information on characteristics of the traffic that it represents. The

term application – apart from typical computer programs – can also include viruses,

misconfigured or misbehaving software, etc. Indeed, traffic classification is a process of

associating groups of IP packets with application identities.

1.2.Thesis goals

The aim of this work is to provide a practical implementation of a traffic classifier. For

the main algorithm, two novel, complementary methods will be used, published in:

• KISS: Stochastic Packet Inspection Classifier for UDP Traffic [Fin09]

• Stochastic Packet Inspection for TCP Traffic [Fin10]

Minor modifications and extensions will be made to these methods (see 2.1.3) in order

to make the resultant system more suitable for practical usage as a firewall element and to

increase its performance. Application of the final system will be limited to about 5% of

Internet endpoints, but carrying more than 98% of bytes (see 2.1).

Result of the thesis is a computer program, with the following characteristics:

• Support for the TCP and UDP protocols.

• Written in C language.

• Operation under the GNU/Linux environment.

• Simultaneous offline and real-time classification.

• Simultaneous training, classification, and performance testing.

• Classification through Support Vector Machines.

• Support for the popular “PCAP” format of IP traffic trace files.

For instance, using the thesis program, operator of a Linux router will be able to

classify the network traffic passing through his infrastructure. First, the program will be

trained with traffic samples of known applications, and then the system will monitor

chosen network interfaces in real-time. Finally, each time a trustworthy classification is

made, the program will emit an adequate message.

9

INTRODUCTION

1.3.Review of existing solutions

1.3.1. Simple methods

An Internet application has some standard ways of putting a kind of a label on its

packets. Such label can be used to determine the application identity and to make

assumptions and predictions on the transmission characteristics.

These standard methods are:

1. Usage of a well-known TP port number. Application of a port-protocol

association database enables classification, e.g. destination port 80 could mean an

HTTP browser.

2. Usage of the Type of Service (ToS) field of the IP header. Its value can tell

the transmission characteristics, e.g. value of 000100002 is a low delay traffic, like

a VoIP transmission. The ToS field was updated and replaced by the

Differentiated Services Code Point (DSCP) in [RFC2474].

Both methods are limited. Port number has space of 16 bits, what gives an upper limit

of well below 105. Similarly, length of the ToS field bounds the number of traffic types

well below 103. By contrast, there are more than 2 x 109 users of the Internet worldwide, as

of March 2011 [IUS]. Each user has his favourite set of applications and own usage

patterns.

Moreover, these methods base on knowledge which is local to the host and its close

neighbourhood. For example, an application requesting a low-delay transmission for a

BitTorrent download may not deserve such prioritization compared to the needs and

resources of the global Internet. What is more, a frequent practice is to establish

interpretations of the DSCP field for the whole Autonomous System (AS) or Internet

Exchange point (IX). Thus, the meaning of a DSCP value changes as IP packet traverses

the Internet. This value may be interpreted differently in different parts of the world.

Finally, neither usage of a well-known port nor setting the DSCP value is mandatory.

All these deficiencies rendered both methods obsolete. They must not be used as a source

of reliable, accurate, and Internet-wide source of information [Kar04].

10

1.3.Review of existing solutions

Still, these simple methods, especially the port-based classification, have some limited

application areas and can produce meaningful results under some conditions. Its greatest

advantage is that it is stateless and can immediately classify each single IP packet.

1.3.2. Deep Packet Inspection

The growth of Peer-to-Peer traffic (P2P), streaming media applications and viruses

unveiled inadequacy of relying on simple methods for traffic classification. The Internet

industry had to invent better techniques.

The most straight-forward solution is to inspect the packet payload for well-known

patterns. A router having a database of patterns would then search the contents of each

packet for a match against the database. Such approach is called Deep Packet Inspection

(DPI). Real-world solutions using this technique exist both in the commercial world

[Ellacoya] and in the open source community [L7], [ODPI].

DPI has a serious drawback – it is effectively useless if the application uses

encryption. Moreover, analysis of the packet contents brings user privacy issues. Search

for a complicated pattern in each packet can be computationally expensive. The database

of patterns needs to be constantly kept up-to-date, and each new protocol signature has to

be manually analysed and extracted by a skilled engineer before it can be used.

However, DPI methods can be very accurate and seem to be the current industry

standard. For researchers, they are often a basis for comparison of new methods [Kar05].

1.3.3. Modern approaches

Another approach pursued nowadays is classification based on some characteristic

features – often statistical – of the traffic as a whole.

Such system could, for example, observe the average packet size and inter-packet time

gaps. Then, an inference engine would make a decision basing on the values of these

statistics – either by comparing them with thresholds or by using machine learning

techniques. Research efforts in this field were started with a fundamental work dating 1994

[Cla94], with practical classification systems appearing a decade later [Rou04], [Kar05],

[Moo05], [Zan05]. They all bring promising results.

11

INTRODUCTION

Basically, each of these methods has two discriminating elements: observed traffic

features and the classification algorithm.

1.3.3.1 Traffic features

IP packets have many properties. Apart of the ones already introduced, there are also:

total packet size, time of arrival, sequence number, and many more. One can aggregate

packets in a flow, but by choosing different tuple elements, many kinds of such traffic

aggregations are possible. Another common aggregation is host-level, e.g. by tuple of

{source IP, TP}. Then, having a set of packets grouped together according to a common

criterion, several traffic features can be computed.

On the lowest packet level, features like mean packet size, observed TCP header flags,

inter-packet time gaps, etc. can be computed. By looking at flow-level characteristics, one

could analyse mean flow duration, mean data volume per flow, and the variance of these

metrics [Rou04]. Another interesting view is a social-level view [Kar05], in which – for

example – the number of remote locations a host contacts, and average volume of data

exchange for each of them, could be analysed.

Finally, in the classification method used in this thesis, traffic features are extracted

from statistical analysis of the packet payload. In [Fin09], randomness of the first few

bytes in UDP packet payloads is measured (see 2.1) and used to form a signature. In a

recent work on fine-grained classification [Byu11], a similar approach adopting a

document retrieval technique is presented. Signatures are created from frequencies of

keyword occurrences in packet payloads.

1.3.3.2 Classification algorithm

Modern traffic classifiers often use machine learning techniques. In a typical scenario,

the classifier must be trained before it is able to distinguish one application from another.

In order to do that, traffic samples of a particular computer program are carefully collected.

Traffic features are extracted and the data is used for training the classifier.

The number of feature vectors required for training depends on their length and the

machine learning technique used, 5-10 x 103 being a rough estimation in [Kim08].

Research efforts tend to use different classification algorithms - Naïve Bayes, Bayesian

12

1.3.Review of existing solutions

Networks, Decision Trees, k-Nearest Neighbors (k-NN), Neural Networks and Support

Vector Machines (SVM), with the latter giving the best results.

The research community lacks a common set of traffic samples [Sal07], hence

comparison of different classification algorithms is hard. Even obtaining a single suitable

training set can be a difficult task. Researchers must fall back on DPI solutions in order to

annotate the data sets with “ground truth”, i.e. labels with application names [Kar05].

1.4.Thesis contents

Chapter 1 discusses the problem of traffic classification and describes the thesis goals:

an introduction to the subject, basic definitions, problem statement and a review of

possible solutions in the existing literature; thesis goals and description of results.

Chapter 2 describes the resultant system in terms of algorithms and design: summary

of the main KISS algorithm with modifications, general system architecture and methods

for performance evaluation.

Chapter 3 gives information on software implementation: design decisions, external

software libraries and descriptions of the libspi library and the spid program.

Chapter 4 presents performance evaluation results.

Chapter 5 concludes the thesis with statements about resultant program quality.

Chapter 6 is a summary on feasibility of practical traffic classification – in general,

and using the thesis software.

Chapter 7 is an appendix holding implementation details – documentation of: data

structure members, Application Programming Interface, and the user interface of the spid

program.

Chapter 8 gives thesis bibliography.

Chapter 9 contains thesis subject and summary in Polish and English.

13

INTRODUCTION

14

2.SYSTEM DESCRIPTION

2. SYSTEM DESCRIPTION

The goal of this thesis is implementation of a statistical traffic classification system

capable of working in real-time.

In order to achieve this, an already existing classification method will be used as the

main algorithm. It will be extended by several other, original elements required to make it

a practical real-time system.

For the main algorithm, two complementary methods will be applied, covering TCP

([Fin10]) and UDP ([Fin09]) protocols, jointly referred to as “the KISS algorithm”. They

both employ a statistical test similar to the Pearson's Chi-Square test, hence the name of

“KISS”, standing for Chi-Square Signatures.

The system elements introduced in the thesis cover: obtaining IP traffic, training the

system, handling the SVM library in an optimal way, and presenting the results.

This chapter describes the whole system from design point of view. Section 2.1

characterize the KISS algorithm with modifications, section 2.2 gives a more practical

view on the system architecture, while the section 2.3 presents an adequate method for

performance evaluation of the whole system.

15

SYSTEM DESCRIPTION

2.1.Main algorithm

The KISS algorithm is a traffic classifier which observes randomness in first bytes of

IP packet payloads.

 As the input it takes a set of IP packets. As the output, a set of {endpoint1, label} pairs

is provided, where label can be used to uniquely determine application identity. Internally,

the algorithm consists of two stages – feature extraction and decision process – depicted on

Fig. 2.1.

KISS authors claim very good results of average 99.6% True Positives2 with less than

1% of False Positives3. However, as it requires at least 80 packets, it is limited to about 5%

of Internet endpoints, but carrying more than 98.6% of bytes4.

1 Non-standard mode of operation for UDP. See 2.1.3.

2 See 2.3 for definition.

3 For UDP (sect. VII in [Fin09]), with similar but a bit worse results for TCP (sect. V in [Fin10]).

4 Sect. V-H in [Fin09].

16

Fig. 2.1: The KISS algorithm. IP packets enter feature extractor, which feeds the decision
process, which produce the output.

2.1.Main algorithm

2.1.1. Feature extraction

Feature extraction begins with queueing packets in endpoints, that is, groups of

packets having the same tuple of {IP address, TP protocol, TP port}. For TCP, all packets

except the first P=5 data segments in TCP sessions are dropped1.

For each queued packet, all data except the first N=12 bytes of packet payload (past

the TP header) is removed. Each of these N bytes is divided into two halves, forming

G=24 groups, each of bit-length equal b=4. Once C=80 packets are gathered in an

endpoint, they form a signature window, a matrix with C rows and G columns, which is

further processed.

For each possible cell value – which is 0 (00002) till 15 (11112) – the number of its

occurrences in each column is counted. Result is denoted with Oi
(g) , where g is the column

number and i is the value.

Next, each column is summarized with a single value X g , which is a statistical test

similar to Pearson’s Chi-Square (χ2) test:

X g=∑
i=0

2b
−1 (Oi

(g)
−E)

2

E
(2.1)

The motivation for this is to measure the distance between distribution of observed

values and the uniform distribution. Its expected value E is chosen as if all possible group

values were equally probable:

E=
C

2b
=5 (2.2)

Indeed, a small X g value means roughly that all out of the 2b possible group values

are equally probable in the column g, hence its randomness across C packets is high. For

instance, it may carry a unique query identifier chosen in a random way for each packet.

On the other hand, columns carrying constant values – like protocol version numbers – will

result in high X g values.

See Sec. III-A in [Fin09] for a detailed discussion.

1 See Sect. III-B in [Fin10].

17

SYSTEM DESCRIPTION

Finally, a signature (or a feature vector) is constructed by collecting X g values from

all columns:

X̄ =[X 1, X 2, ... , X G] (2.3)

This 24-dimensional vector is a very accurate application fingerprint that can be used

for further classification.

2.1.2. Decision process

The task of the decision process is to reveal the application identity behind a signature.

For this task, KISS uses Support Vector Machines (SVM) [Cor95], which is a set of

machine learning techniques that can be used for classification and regression. The general

idea behind SVM is to rearrange the problem space so that the training samples can be

easily separated by hyper-planes. This is realized by means of translating the input N-

dimensional space into a possibly infinite-dimensional space, maximizing the distance

between hyper-planes and the training sample points.

Before it can be used, SVM needs to be trained with several signatures annotated with

the target class. As a result of such training process, a model is generated, which is later

used for prediction of the proper signature class, which is the output of the KISS decision

process.

2.1.3. Modifications

A few modifications and extensions were made to the KISS algorithm, for the needs of

the thesis.

2.1.3.1 Classification objects

Section IV-A of [Fin09] defines two classification entities – a flow and an endpoint. In

the thesis, such a modification is made, that packets are grouped in endpoints without

regard to packet direction. This is contrary to Sec. III-B in [Fin10].

Motivation for this is to weaken the limits mentioned in 2.1. With this modification,

the requirement of C=80 packets in a signature window can be attained earlier.

18

2.1.Main algorithm

2.1.3.2 Signature extension

Feature vectors can be optionally extended with 4 coordinates:

1. Average packet size.

2. Average value of inter-packet time gap (IPT).

Inter-packet time gap is the time that elapses between two consecutive packets.

First, an average E and a standard deviation σ of IPT values are calculated. Then,

outliers are rejected by dropping all values greater than E+1.645σ . This assumes

that IPT follows the standard distribution and thus rejects about 5% of the input

values. Finally, the average value is recomputed and used as the coordinate value.

3. Average differences in IPT.

This coordinate holds the average difference between two consecutive IPT values,

after outlier detection. It is to mimic the concept of packet jitter.

4. Numeric representation of the transport protocol.

Motivation behind introducing these 4 coordinates is to improve the performance of

the resultant system. Undisturbed values of these “flow-level” characteristics are usually

available in a typical network scenario, and can contribute to the discriminating power of

the feature vectors.

2.1.3.3 Complex decision process

In the original algorithm, a single endpoint can be classified many times, once for each

signature window. In the thesis however, three reconciliation algorithms, as suggested in

sect. IV-B of [Fin09], were implemented.

1. “Simple” - uses the last classification directly, as in the original algorithm.

2. “Best” - uses the classification with the highest probability so far.

3. “EWMA” - tracks the Exponentially Weighted Moving Average of classification

probability for each possible outcome, and uses the one with the highest value seen

so far.

19

SYSTEM DESCRIPTION

2.1.3.4 Unknown protocol detection

A potential drawback of KISS is that it requires good quality “Background” traffic

samples during the learning phase (sect. V-C in [Fin09]), in order to detect the applications

that are unknown to the classification system.

In the thesis, this was solved using a special functionality of the libsvm library (see

3.2). For each classification, a vector with relative class membership probability is

obtained. The sum of probabilities is always equal 1, so in order to give the vector values

an absolute meaning, the difference between the first and the second highest value is

calculated, and the result is treated as the classification probability. An unknown protocol

is detected by introducing a simple threshold mechanism. If the classification probability is

below the threshold, classification is considered “not certain enough” and rejected.

2.2.System architecture

Previous section describes the main algorithm with its two stages of feature extraction

and decision process. In order to implement it as a practical system, these stages have to be

decomposed, and the whole algorithm needs to be complemented with a few elements, as

presented on Fig. 2.2.

20

Fig. 2.2: General system architecture. System elements presented in blue. Arrows show data paths,
with data kinds as red labels. Dashed arrows represent paths used for system training.
Green frame roughly shows elements defined in the original KISS algorithm.

2.2.System architecture

The system consists of the following elements:

1. Signature database

2. Training signatures

3. SVM model

4. Traffic sources

5. Endpoint table

6. Feature extraction

7. Decision process

8. Classification results

Following subsections describe these components.

2.2.1. Signature database

The process of obtaining signatures from IP packets can be computationally intensive

(recall 2.1.1). For instance, if one wants to train the system so it is able to properly

recognize 20 applications, for good-quality results about 500 signatures need to be

extracted for each of them, giving a total of almost 1 million packets.

This “knowledge” of the system is lost once the program is terminated. However, the

process of learning it once again can be sped up by saving the extracted signatures

(annotated with labels) on a hard disk. Hence, the next time the program is run, no time-

consuming packet analysis is required. Signatures are immediately loaded into the program

memory.

This is the task of the Signature database. It reads signatures from hard disk and feeds

them into the Training signatures element. Furthermore, new signatures that will be

obtained through IP packet analysis during program execution will be stored in the

database, too.

2.2.2. Training signatures and the SVM model

Before SVM is able to make classifications, it needs to be trained with samples

annotated with the target class (recall 2.1.2). This is also a computationally intensive task.

21

SYSTEM DESCRIPTION

Moreover, the model can not be incrementally updated. Even a single new learning

signature can cause the whole model to be recomputed. In a real-time system, this could

happen many times per second.

The task of the Training signatures element is to be a kind of a buffer to the SVM

model update process. It ensures that the model is recomputed at most once per specified

amount of time, e.g. 10 seconds. Thus, there is a chance that several new signatures are

buffered before the update process is run.

2.2.3. Traffic sources

Traffic sources supply the system with IP packets. For off-line classification, it is a file

with IP packets stored in the PCAP format [PCAP]. For real-time operation, it is a network

interface – e.g. an Ethernet NIC – on which all the traffic passing through it is captured.

The task of this element is to provide an interface to access these underlying packet

sources in a common way. At the same time, many packet sources can work

simultaneously, some of which being off-line sources, and some real-time. All packets are

passed to the Endpoint table.

Usually, a traffic source supplies packets of unknown applications. If the application is

known, packets are used for training. In such case, they do not enter the Decision process,

but supplement the Training signatures. Alternatively, they follow the standard path of

classification, but the Classification results element will verify if the system produced a

valid answer, thus giving an insight into the system performance.

2.2.4. Endpoint table

The Endpoint table element is the central component of the whole system. It has two

fundamental tasks of gathering IP packets in groups of endpoints and collecting

classification decisions made on them.

Special care needs to be taken for off-line packet sources. It may happen, that packets

stored in two files are distant in time – for instance, packets captured in year 2011 and

2008. For this reason, packets from two off-line sources can not be grouped together in a

single endpoint. For real-time sources, this is allowed.

22

2.2.System architecture

The table is periodically swept by a garbage collector, which removes all endpoints,

for which the last packet is older than 5 minutes. For off-line sources, the time distance to

the last packet received from this source is checked.

The Endpoint table feeds the Feature extraction element once at least C=80 packets

(see 2.1.1) are collected in a single endpoint.

2.2.5. Feature extraction and the decision process

The task of these two elements was described in section 2.1. Decision process requires

an already prepared, valid SVM model. If it is absent, no classification can be made.

The result is stored in the Endpoint table as an endpoint property. Whenever the value

of this property changes, the Classification results element is notified.

2.2.6. Classification results

The task of this element is to inform the system user that an application identity was

recognized at a given Internet endpoint. The resultant numeric label used internally (e.g.

“7”) is translated into string representation (e.g. “Skype”). Name of the traffic source is

also given (e.g. “eth0” or “~/traces/skype.pcap”). In case the application behind the traffic

source is known, the result will be verified and used to compute the system performance

metrics.

2.3.Methodology

There are two possible kinds of a traffic classifier output – its result is either valid or

invalid. This will be the fundamental field of performance evaluation in the thesis, as

described below (based on [Fin09]).

Two notions of a True/False and a Positive/Negative need to be presented. Endpoint

classification is True if it is valid, and False otherwise. All classifications belonging to the

particular application identity are Positive, and others are Negative. Thus, classifier output

can be either a True Positive (TP) or True Negative (TN) if it is valid, and False Positive

(FP) or False Negative (FN) otherwise.

Now, four metrics can be introduced:

23

SYSTEM DESCRIPTION

• False Positive Percentage for application identity x

%FP x=100⋅
FP x

s̄x

(1.1)

◦ FP x is number of False Positives for x

◦ s̄x is number of endpoints not belonging to x

• False Negative Percentage for x

%FN x=100⋅
FN x

sx

(1.2)

◦ FN x is number of False Negatives for x

◦ sx is number of endpoints belonging to x

• True Positive Percentage for x is %TP x=100−%FN x (1.3)

• True Negative Percentage for x is %TN x=100−%FP x (1.4)

For instance, if there are 100 “Skype” endpoints and the classifier says 10 of them are

“BitTorrent”, then %FN Skype=10 .

Finally, the system performance can be evaluated using traffic samples of applications,

whose identities are already known. This knowledge of true application identities is called

ground truth. It can be obtained in several ways, for instance using a DPI packet classifier

like [L7] or a simple TP port classifier.

Samples are fed into the system and the result is compared to the ground truth.

Observation of two metrics – %TP and %FP – and their statistics allows to make

conclusions on the performance of the system. A well-performing system is characterized

by high %TP values while keeping the %FP metric as low as possible.

24

3.IMPLEMENTATION

3. IMPLEMENTATION

A real-time traffic classification system requires a robust and fast implementation.

Nowadays, backbone links of ISP companies often carry hundreds of thousands of packets

per second. This gives just a few microseconds for handling each packet.

Moreover, the goal of the thesis is to provide a practical system. Thus, it needs to be

directly usable for many tasks. This includes application at a typical ISP company, which

wants to e.g. block P2P traffic and computer viruses, while prioritizing Internet telephony.

In such scenario, resultant software will be just a constituent element of a greater firewall

system. On the other hand, a government agency whose mission is to discover society

trends, will most likely want to work on sets of off-line traffic files, probably in a graphical

environment. Again, the classification element will be just a part of a GUI application.

These two examples show that an implementation of a traffic classifier needs to be

flexible, portable and embeddable.

The system introduced in the thesis works under Linux operating system, which

belongs to the family of UNIX-like systems and heavily relies on Open Source software.

This implicitly means that the implementation needs to obey the rules set by other open

source systems, and by general guidelines for programs working in UNIX environments.

This chapter discusses implementation of the thesis software in detail. Section 3.1.

gives an introductory view on the program architecture, section 3.2. references external

libraries that the system relies on. Sections 3.3. and 3.4. give detailed documentation of the

source code.

25

IMPLEMENTATION

3.1.Architecture

The system is entirely implemented in C language under the Linux operating system,

on a PC system. However, this does not pose a tight limit on the area of its possible

applications. It would require little or no modification to port the system to another UNIX-

like platform, including embedded systems.

The system works as a single-threaded process with one global event loop. The loop is

used for external communication and for exchange of internal messages. Such architecture

enables quasi-parallel processing. For instance, handling incoming IP packets is possible

while making classification decisions at the same time.

Compared to a multi-threaded architecture, such approach greatly simplifies the whole

system, but under some circumstances it might cause higher latency, i.e. the time that

lapses between the moment in which a new packet enters the system and the event of its

classification. Specifically, this would happen on a multiprocessor machine. However, in

such case, each CPU could be assigned different part of the IP addressing space, as

presented on Fig. 3.1.

26

Fig. 3.1: Classification on a multiprocessor machine. Each CPU handles
different part of the IPv4 addressing space.

3.1.Architecture

Functionality of the system is divided into multiple modules. In many cases, no direct

procedure call is possible between the modules. Instead, a notification mechanism is used

in which one functional element informs another, for example, that a new signature

window is ready to be classified. This is realized by means of internal events (or

messages), transported by the main program loop. The source module announces that some

event happened, while there can be any number of subscribers, which will handle the

event, with some time delay. Event announcements are queued, so this delay depends on

the current queue length and its processing speed.

Still, program modules can write to shared memory, so there is a direct data

communication path by means of variables. No locking or synchronization mechanisms are

needed, as the program is single-threaded. Indeed, all modules have direct access to a

common instance of the fundamental data structure: struct spi (see 3.3.2.1).

The classification system is almost entirely implemented as a library, called libspi,

where “spi” stands for Statistical Packet Inspection. A simple command-line front-end

program utilizing this library was also created, named spid.

Modular architecture of the system lets for replacement of the main algorithm (i.e. the

feature extraction phase and the basic decision process, 2.1) and the reconciliation

algorithm (i.e. the complex decision process, 2.1.3.3). Special efforts were made in order to

make such a potential modification to the system easy and straightforward.

3.2.External libraries and facilities

The system relies on several external components.

For implementation of the main program loop, the libevent [Pro00] library is used. It

handles the task of monitoring traffic sources for new packets, periodically executes the

endpoint table garbage collector and is used as a queue for internal events.

The network traffic is obtained via the libpcap library [PCAP]. It reads packet trace

files and captures live traffic from network interfaces. However, the latter depends on

packet capture facilities delivered by the operating system, which will deny access to the

data without adequate privileges.

27

IMPLEMENTATION

As a general tool set, a library based on libasn [For05] is adopted. It provides basic

data structures of hashing table and linked list, memory management utilities and some

mathematical functions in form of C pre-processor macros.

For realization of the SVM decision process, a popular implementation of libsvm

[CC01a] is employed. For training, its svm_train() function is used, and

svm_predict_probability() for classification with probability output.

3.3.Main program: the libspi library

3.3.1. File list

libspi source code consists of the following files:

• datastructures.h : declarations of data types and structures used throughout the

system and in the API

• settings.h: holds pre-processor constants used as main algorithm parameters and

some of the fundamental options of the whole system

• spi.h: declarations of the API – public functions exported by the library

• spi.c: main program (see 3.3.3.1); implements initialization procedure,

management of traffic sources, internal event system, garbage collector, training

signature queues, and memory management routines

• source.h: declares source.c functions that can be called internally

• source.c: implements two traffic sources; PCAP files and network interface

sniffing via the libpcap library; holds a generic IP packet parser which is the source

of signature windows

• flow.h: declares flow.c functions that can be called internally

• flow.c: TCP flow table; implements the P limit (recall 2.1.1) and detects RST/FIN

flags which close connections

• ep.h: declares ep.c functions that can be called internally

• ep.c: the endpoint table; implements storage of new packets

28

3.3.Main program: the libspi library

• kissp.h: declares kissp.c functions and data structures that are used internally

• kissp.c: implements the extended KISS algorithm; connects to the libsvm library

• verdict.h: declares verdict.c functions and data structures

• verdict.c: implements the complex decision process (see 2.1.3.3): “simple”,

“best” and “EWMA” algorithms; produces final verdict of endpoint classification

3.3.2. Data structures and variables

The datastructures.h header file contains declarations of data structures, with a

few declarations put in kissp.h and verdict.h files. This subsection gives

documentation of the most important data structures and their application as variables.

3.3.2.1 Main structure: struct spi

The struct spi is a root data structure, instance of which is passed to every

function. Conceptually, this is similar to the special variable this used in the C++ object-

oriented programming language. Every data piece used by the program can be reached

from this structure. Each instance of struct spi thus represents an instance of the whole

libspi. Structure synopsis presented on Listing 3.1. See 7.1.1 for details.

1. struct spi {

2. mmatic *mm;

3. struct spi_options options;

4. bool running;

5. bool quitting;

6. struct event_base *eb;

7. struct event *evgc;

8. thash *subscribers;

9. tlist *sources;

10. thash *eps;

11. thash *flows;

12. tlist *traindata;

13. tlist *trainqueue;

14. struct spi_stats stats;

15. void *cdata;

16. void *vdata;

17. };

Listing 3.1: struct spi. Main data structure.

29

IMPLEMENTATION

3.3.2.2 Internal events: spi.subscribers, struct spi_subscribers,

spi_event_cb_t and struct spi_event

Inter-module control flow is realized by means of internal events (see 3.1). Each event

is uniquely identified by its name, e.g. classifierModelUpdated. Event subscriptions

are registered in the subscribers member of struct spi, which is a hashing table. For

table keys, event names are used, so multiple subscriptions to the same event are stored in

the same place. Each table value is an instance of struct spi_subscribers.

The main task of struct spi_subscribers is to hold references on event handler

functions (so-called callbacks). Each callback address is stored in a data type of

spi_event_cb_t. Synopsis of both of them is given on Listing 3.2. See 7.1.2 for details.

1. struct spi_subscribers {

2. tlist *hl;

3. tlist *ahl;

4. enum spi_aggstatus {

5. SPI_AGG_DISABLED = 0,

6. SPI_AGG_READY,

7. SPI_AGG_PENDING

8. } aggstatus;

9. };

10. typedef bool spi_event_cb_t(

11. struct spi *spi,

12. const char *evname,

13. void *arg

14.);

Listing 3.2: struct spi_subscribers and typedef spi_event_cb_t. Structures used for handling of
internal event subscriptions.

Whenever an internal event is announced, an instance of struct spi_event is

created, holding data which will be later used during event handling. This instance is

finally stored in an event queue managed by libevent. Synopsis given on Listing 3.3:

1. struct spi_event {

2. struct spi *spi;

3. const char *evname;

4. struct spi_subscribers *ss;

5. void *arg;

6. bool argfree;

7. };

Listing 3.3 struct spi_event. Representation of an event announcement.

30

3.3.Main program: the libspi library

3.3.2.3 IP traffic: struct spi_source, spi_source_t and struct spi_pkt

A traffic source is represented by struct spi_source. It holds information on the

underlying libpcap source of packets, packet counters, etc. Source type is represented by

spi_source_t. Synopsis given on Listing 3.4. Refer to 7.1.3 for details.

1. typedef enum {

2. SPI_SOURCE_FILE = 1,

3. SPI_SOURCE_SNIFF

4. } spi_source_t;

5. struct spi_source {

6. struct spi *spi;

7. spi_source_t type;

8. spi_label_t label;

9. bool testing;

10. int fd;

11. struct event *evread;

12. unsigned int counter;

13. unsigned int signatures;

14. unsigned int learned;

15. unsigned int eps;

16. bool closed;

17. union {

18. struct {

19. pcap_t *pcap;

20. const char *path;

21. struct timeval time;

22. struct timeval gctime;

23. } file;

24. struct {

25. pcap_t *pcap;

26. const char *ifname;

27. } sniff;

28. } as;

29. };

Listing 3.4 struct spi_source. Representation of a traffic source.

Incoming packets are stored in struct spi_pkt – see Listing 3.5:

1. struct spi_pkt {

2. uint8_t *payload;

3. struct timeval ts;

4. uint16_t size;

5. };

Listing 3.5: struct spi_pkt. Representation of an IP packet.

31

IMPLEMENTATION

3.3.2.4 Endpoints: spi_epaddr_t, spi.eps, and struct spi_ep

Each endpoint can be uniquely identified by a tuple of {TP protocol, IP address, TP

port}. In source code, such tuple – referred to as an endpoint address – is stored in a

special variable type of spi_epaddr_t.

The spi.eps hash table tracks all active endpoints. As table keys, endpoint addresses

are used, and table values are instances of struct spi_ep. This structure gathers various

endpoint data – packet list and classification verdict being the most important ones.

Synopsis given on Listing 3.6, with details available in 7.1.4.

1. typedef uint64_t spi_epaddr_t;

2. struct spi_ep {

3. mmatic *mm;

4. struct spi_source *source;

5. spi_epaddr_t epa;

6. struct timeval last;

7. tlist *pkts;

8. bool gclock;

9. uint32_t predictions;

10. spi_label_t verdict;

11. double verdict_prob;

12. uint32_t verdict_count;

13. void *vdata;

14. };

Listing 3.6: spi_epaddr_t and struct spi_ep. Representation of a traffic endpoint.

The task of spi_epaddr_t is to store three constitutive properties of an endpoint

address in a single, 64-bit value. In C language, it is constructed in the following way:

1. spi_epaddr_t epa = (proto << 48) | (ip_addr << 16) | port;

Where proto, ip_addr and port are: the transport protocol, the IPv4 address and the

TP port, respectively.

3.3.2.5 Signatures: struct spi_signature and spi_label_t

Each application identity can be uniquely identified by its numeric label, which is

stored in a special data type of spi_label_t – an 8-bit integer. This limits the label range

to 0 – 255. Value of 0 is regarded as “unknown identity”. Window signature data is

represented by struct spi_signature. Synopsis on Listing 3.7, details in 7.1.5.

32

3.3.Main program: the libspi library

1. typedef uint8_t spi_label_t;

2. struct spi_signature {

3. spi_label_t label;

4. struct spi_coordinate { int index; double value; } *c;

5. };

Listing 3.7: spi_label_t and struct spi_signature. Representation of a window signature.

3.3.2.6 Classification results: struct spi_classresult and spi_cprob_t

The output of SVM classification is stored in struct spi_classresult.

Functionality of membership probability of libsvm is used, which requires additional

storage place. This is handled by variables of spi_cprob_t type. Synopsis given on

Listing 3.8. See 7.1.6 for details.

1. typedef double spi_cprob_t[SPI_LABEL_MAX + 1];

2. struct spi_classresult {

3. struct spi_ep *ep;

4. spi_label_t result;

5. spi_cprob_t cprob_lib;

6. spi_cprob_t cprob;

7. };

Listing 3.8: spi_cprob_t and spi_classresult. Representation of SVM classification results.

Indeed, spi_cprob_t is a 256-element array of double. Cell i holds a floating-point

number in range 0.0 – 1.0: a relative probability that the input vector belongs to class i.

3.3.2.7 Performance evaluation: struct spi_stats

Data required for performance assessment (see 2.3) are collected in struct

spi_stats. It contains counters, which may be later used for calculation of the %TP and

%FP metrics. Synopsis given on Listing 3.9, details in 7.1.7.

1. struct spi_stats {

2. uint32_t learned_pkt;

3. uint32_t learned_tq;

4. uint32_t test_all;

5. uint32_t test_is[SPI_LABEL_MAX + 1];

6. uint32_t test_ok;

7. uint32_t test_FN[SPI_LABEL_MAX + 1];

8. uint32_t test_FP[SPI_LABEL_MAX + 1];

9. };

Listing 3.9: spi_stats. Collection of system performance counters.

33

IMPLEMENTATION

3.3.2.8 KISS algorithm: struct kissp

The system is designed in such a way, that application of a different method for the

main algorithm would be possible, hence the pointer at spi.cdata is of generic void *

type. However, it holds a pointer to the structure representing the KISS algorithm used in

the thesis – struct kissp. Synopsis on Listing 3.10. Refer to 7.1.8 for details.

1. struct kissp {

2. int feature_num;

3. struct { bool pktstats; } options;

4. struct {

5. struct svm_model *model;

6. struct svm_parameter params;

7. int *labels;

8. int nr_class;

9. } svm;

10. };

Listing 3.10: struct kissp. Internal data of the modified KISS algorithm.

3.3.2.9 Complex decision process: struct verdict and struct ewma_verdict

The two structures of struct verdict and struct ewma_verdict hold data of the

reconciliation algorithm (see 2.1.3.3) for the whole system and for each endpoint,

respectively. Synopsis given on Listing 3.11, and details in 7.1.9.

1. struct ewma_verdict {

2. spi_cprob_t cprob;

3. };

4. struct verdict {

5. enum {

6. SPI_VERDICT_SIMPLE,

7. SPI_VERDICT_EWMA,

8. SPI_VERDICT_BEST

9. } type;

10. struct {

11. uint16_t N;

12. } ewma;

13. };

Listing 3.11: struct ewma_verdict and struct verdict. Data of the complex decision process.

34

3.3.Main program: the libspi library

3.3.3. Control flow and events

3.3.3.1 System initialization

The spi.c file holds several important procedures, including the spi_init()

function, which implements the task of system initialization (see Fig. 3.2). It prepares an

instance of struct spi which may be further used. During this process, the main

algorithm structure is initialized by means of kissp_init() and _svm_init() functions,

35

Fig. 3.2: spi.c file. Procedures of library initialization, garbage collector and of adding a
traffic source.

IMPLEMENTATION

latter of which sets up parameters of the libsvm library. The verdict_init() function is

called in order to prepare the reconciliation algorithm variables.

During initialization, the libevent library is prepared for event handling. This includes

setting up execution of the garbage collector each 10 seconds, which is implemented in

function named _gc(). This function will iterate through all entries in spi.eps and

spi.flows, and remove old entries, i.e. those, for which there were no new packets for

more than 5 minutes. The garbage collector is also run if either the

classifierModelUpdated or the gcSuggestion event is announced.

New traffic sources can be added using a function named spi_add(). Depending on

the type of the source, it calls either source_file_init() for off-line traffic files or

source_sniff_init() for network interfaces. As the result, functions of the libpcap

library are called, respectively either pcap_open_offline(), or pcap_open_live().

This operation opens a new file descriptor, which is monitored for new data available to be

read, using the libevent library. Finally, the source is appended to the list of system traffic

sources, located in spi.sources (see 3.3.2.1).

3.3.3.2 Route of a packet

Figure 3.3 presents the route of a packet in the system.

36

3.3.Main program: the libspi library

37

Fig. 3.3: Flow of an IP packet. Route from entering the system till the final classification.

IMPLEMENTATION

First, when a packet arrives on the traffic source monitored by libevent, an event is

generated. It is handled in _pcap_read(), which calls a libpcap function named

pcap_dispatch() in order to fetch the packet. This function can read many packets at

once, calling _pcap_callback() for each of them.

If the packet is received from an off-line source – i.e. a traffic file – then a special

check is made if the virtual time in file is more than 10 seconds since last execution of the

garbage collector. In such case, an event of gcSuggestion is generated.

Then the packet is parsed, and the values inside IP and TP headers are extracted. In

case the packet belongs to a TCP stream, flow_tcp_flags() and flow_count()

functions are called for TCP flow tracking. Then, if the packet is long enough, its data are

stored in the endpoint table. They are passed to _ep_new_pkt() twice – for the source

endpoint and for the destination endpoint.

In _ep_new_pkt(), packet data are copied to a new instance of struct spi_pkt and

appended to the list of endpoint packets. If there are at least 80 packets on the list, a new

event of endpointPacketsReady is announced, along with a pointer to the endpoint that

generated the event.

This event is handled by _ep_ready() in the kissp.c file. In a loop, C=80 packets

are consumed by the feature extractor implemented in _signature_compute_eat(),

which produces a window signature. It is passed to _svm_predict() which invokes

svm_predict_probability() function of the libsvm library and announces the result

with an event of endpointClassification, with relevant data put in an instance of

struct spi_classresult.

Finally, the reconciliation algorithm is run, whose task is to join many classifications

of the same endpoint into a single result. The _verdict_new_classification()

function handles the endpointClassification event, calling implementation of the

appropriate method. If the final result is different from the current endpoint classification, a

new event of endpointVerdictChanged is announced, along with a pointer to the

endpoint that caused the event.

38

3.3.Main program: the libspi library

3.3.3.3 System training

Figure 3.4 presents the process of training the system using IP packets.

If a traffic source has a label, the application identity of all its IP packets is known.

Hence, when a window signature is extracted, it may be used for training. The buffer of

training signatures is supplemented through the spi_train() function. When a new

signature is appended to the list, a delayed event of traindataUpdated is announced.

There are 3 seconds for further updates from the moment in which the first signature

extends the list.

Once the event is delivered, it is handled by _svm_train(), which creates a new

SVM model by calling svm_train() from the libsvm library.

39

Fig. 3.4: System training. Resultant signature is used in the SVM model with a delay.

IMPLEMENTATION

3.3.4. Application Programming Interface

Functionality of libspi can be accessed from external programs using its Application

Programming Interface, which is stored in spi.h file. Listing 3.12 presents the set of

essential API functions. Refer to 7.2 for a detailed description of the API.

1. struct spi *spi_init(struct spi_options *so);

2. void spi_free(struct spi *spi);

3. int spi_add(struct spi *spi, spi_source_t type,

4. spi_label_t label, bool test, const char *args);

5. int spi_loop(struct spi *spi);

6. void spi_stop(struct spi *spi);

7. void spi_announce(struct spi *spi, const char *evname,

8. uint32_t delay_ms, void *arg, bool argfree);

9. void spi_subscribe(struct spi *spi, const char *evname,

10. spi_event_cb_t *cb, bool aggregate);

11. void spi_train(struct spi *spi, struct spi_signature *sign);

12. void spi_trainqueue(struct spi *spi, struct spi_signature *sign);

13. void spi_trainqueue_commit(struct spi *spi);

14. double spi_stats_fp(struct spi *spi, spi_label_t label);

15. double spi_stats_fn(struct spi *spi, spi_label_t label);

 Listing 3.12: libspi API. Set of essential functions.

3.4.Front-end: the spid program

As a part of the thesis, a simple front-end program using libspi was written. Its task is

to make the libspi functionality accessible from the command-line.

3.4.1. File list

Source code consists of the following files:

• spid.h: holds data structures and forward function declarations of spid.c

• spid.c: the main program; communication with the libspi library and display of

classification results

• samplefile.h: forward declarations of samplefile.c functions

• samplefile.c: implementation of functions for reading and writing files with

signatures

40

3.4.Front-end: the spid program

3.4.2. Data structures

Program data structures are defined in spid.h file. Synopsis of the two structures –

struct spid and struct source – given below on Listing 3.13.

1. struct source {

2. char *proto;

3. char *cmd;

4. bool test;

5. };

6. struct spid {

7. struct mmatic *mm;

8. struct spi *spi;

9. struct spi_options spi_opts;

10. thash *proto2label;

11. thash *label2proto;

12. tlist *learn;

13. tlist *detect;

14. struct options;

15. };

Listing 3.13: struct spid and struct source. Two data structures of the spid program.

struct source represents a traffic source, and the task of struct spid is similar to

struct spi – to be the main instance data structure. See 7.3 for details.

3.4.3. Control flow and communication with libspi

Program control flow is presented on Fig. 3.5.

41

IMPLEMENTATION

Execution starts in the main() function, which after data structure initialization calls

parse_config(). Command-line arguments and any configuration files referenced in

program invocation are parsed, and the control is returned to main().

In case a signature database file is given, a parser is called, implemented by

sf_read() in samplefile.c. This function reads the database line-by-line and calls

spi_trainqueue() for each signature properly read.

A set of libspi functions is used in order to set up the classification system properply

before it is started. Subscriptions to libspi events are made, and finally the main loop is

started by means of spi_loop().

42

Fig. 3.5: spid control flow. Program is constructed around the main libspi loop.

3.4.Front-end: the spid program

Each time the system issues a new endpoint classification, the _verdict_changed()

function is called. The result is displayed on the standard output, in a form readable by a

human operator.

When the system is stopped – e.g. due to the end of packets in all traffic sources –

program control is returned to main(). If the system learned new signatures from IP

packets, the signature database file is rewritten by sf_write(), which stores all signatures

from spi.traindata (see 3.3.2.1) on disk.

Finally, system performance statistics are printed to the standard output – see Błąd:

Nie znaleziono źródła odwołania.

3.4.4. User interface

The spid program is invoked from the command-line, according to the following

syntax:

1. spid [OPTIONS] [<traffic sources...>]

Where OPTIONS is a list of options, from the following set:

• --learn=<lspec>: train the system according to <lspec> (see 7.4.1)

• --learndb=<file>: train the system according to given index file (see 7.4.2)

• --signdb=<file>: use given signature database file (see 7.4.3)

• --test=<lspec>: test the system according to <lspec>

• --testdb=<file>: test the system according to given index file

• --kiss-std: disable KISS signature extensions (see 2.1.3.2)

• --verdict-threshold=<t>: ignore classifications with probability below <t>%

(see 2.1.3.3)

• --verdict-simple: use the “Simple” method as decision reconciliation

algorithm (EWMA is used by default)

• --verdict-best: use the “Best” method

43

IMPLEMENTATION

• --verdict-ewma-len=<n>: set the number of samples for “EWMA” method

• --stats: print system performance metrics when program finishes

• --print-probs: include probability information in classification output

• --debug=<n>: set debugging level to <n>; this enables output of internal

diagnostic messages

• --help: show short usage manual

After OPTIONS, there is a space-separated list of traffic sources for detection. Each

entry must conform to the command-line source specification format (see 7.4.1).

Refer to 7.4.4 and 7.4.5 for documentation of the output format.

44

4.EVALUATION

4. EVALUATION

This chapter describes system performance evaluation using metrics defined in 2.3.

Four practical experiments are made and their outcomes are presented.

Although the system is capable of working in real-time, i.e. capturing IP traffic on

network interfaces, all performance evaluation tests were made in off-line mode, using

trace files. Such approach gives meaningful results for all kinds of traffic sources.

Moreover, an off-line evaluation test-bed is easier to develop and supervise.

Section 4.1 gives description of datasets used for experiments, i.e. traces of IP traffic.

Section 4.2 defines the tests and gives their results, with discussion in the last Section 4.3.

45

EVALUATION

4.1.Datasets

For evaluation of the system performance, three datasets were used:

• Trace1: personal dataset, collected by thesis author

• Trace2: Skype UDP traces, collected in a test-bed environment

• Trace3: IP-TV traces, collected in a real network

Trace1 is result of a constant packet capture on a typical desktop computer for 30 days

– July till August 2011. Dataset consists of 144 files, about 100 thousand IP packets each,

of total size 1GB.

Trace2 and Trace3 were obtained from the Tstat project [Tstat], held by the authors of

[Fin09] and [Fin10]. Both datasets were collected and organized with the support of the

Robust and Efficient traffic Classification in IP nEtworks [RECIPE] and MIsure

sperimentali e MOdelli di traffico dati multiServizio A pacchetto [MIMOSA] projects.

Trace2 was created by merging the first 9 files available for download from the Tstat

Skype Testbed Traces [TstatSkype], obtaining a file of 148MB.

Trace3 was created by extracting the first 200 000 packets from the first file available

for download from the Tstat Multicast IP-TV Traces [TstatIPTV], resulting in a file of

14MB. IP packets contained in this dataset were collected in a real network of an Italian

company FastWeb, located in Torino. Captured traffic are multicast IP-TV transmissions

encoded with MPEG-2 algorithms, encrypted and encapsulated in a proprietary UDP

protocol.

For all packets in Trace2 and Trace3 the application identities are known. For Trace1,

a simple packet classification using port matching (see 1.3.1) was adopted. As a result,

packets belonging to the following applications were extracted:

• dns: BPF ([BPF]) filter of udp and port 53

• openvpn: udp and port 1194

• bittorrent: tcp and port 51413

• http: tcp and port 80

46

4.1.Datasets

• https: tcp and port 443

Finally, traces of 7 different TCP and UDP applications were obtained from Trace1,

Trace2 and Trace3, giving a total of almost 9 million packets and almost 30 thousand

KISS signatures. Table 4.1 summarizes the testing data sets.

It is important to note that the signatures are not uniformly distributed across the

endpoints, i.e. only some endpoints are capable of generating a signature, due to the C and

P limits (recall 2.1.1.). However, the number of packets can provide a hint on the expected

number of signatures.

4.2.Results

4.2.1. Test 1: performance vs. training set size

The goal of the first test was to observe the impact of training set size on system

performance, similarly to [Fin09] sect. V-E.

First, 4 applications of DNS, Skype, IPTV and HTTP were chosen. For each of them,

its trace file was divided into two halves (in terms of packets ordered by their timestamps)

– A and B. The B part was further fed into the system for training, obtaining a signature

database file of several lines.

47

Table 4.1 Summary of testing data sets. TCP applications need more packets per signature.

Source Application Size (MB) Endpoints Signatures
Trace1 dns UDP 8 82 40724 1028
Trace1 openvpn UDP 6 50 9 1239
Trace2 skype UDP 148 729 15 18215
Trace3 iptv UDP 14 200 142 4921
Trace1 bittorrent TCP 114 1151 4866 134
Trace1 http TCP 595 6153 138923 2586
Trace1 https TCP 39 404 9910 214

TOTAL 924 8769 194589 28337

Transport
protocol

Packets
(thousands)

EVALUATION

For each application, a subset of its signature database was created, by extracting the

first N signatures. This was repeated for N = 5, 10, 25, 50, 100, 250 and 500. Signature

databases of all protocols with the same value of N were merged.

Finally, for increasing values of N, the system was trained using merged signature

databases. In each step, all A parts were fed into the system for classification, in test mode

(the --testdb option of spid, see 3.4.4).

Performance metrics for each value of N were collected. Results are presented in

Table 4.2 and on Fig. 4.1. The last two columns of the table hold percentages of valid and

invalid decisions.

48

Table 4.2: Test 1 results. Dependence of classification performance on the number of training signatures.

HTTP IPTV Skype DNS

number %TP %FP %TP %FP %TP %FP %TP %FP %TP %FP
5 87 0 0 0 0 0 0 0 22 0 258 182
10 100 0 1 0 100 0 100 0 75 0 300 140
25 100 8 1 0 100 0 100 0 75 2 302 138
50 100 9 1 0 100 0 100 0 75 2 302 138
100 100 10 86 0 100 0 100 0 97 3 420 20
250 100 7 86 0 100 0 100 0 97 2 420 20
500 100 0 100 0 100 0 100 0 100 0 440 0

Signatures Average Valid Invalid

decisions decisions

4.2.Results

4.2.2. Test 2: overall system performance

In Test 2, the system was evaluated in an overall performance test, and compared with

the standard KISS algorithm, i.e. without the modifications introduced in the thesis.

First, the whole testing data set was divided into two subsets: one for training and one

for testing. Taking into account the results of Test 1, the division was made in such way,

that at least 500 signatures for each application were present in the training subset. In case

of BitTorrent and HTTPS this was not possible, hence these trace files were divided into

two halves. Table 4.3 presents the obtained input traffic traces for Test 2.

49

Fig. 4.1: True Positive Percentage as function of training signatures number. Each protocol
has its own minimal number of training signatures for good performance results.

Table 4.3: Input data set for Test 2. Note reduced training sets for BitTorrent and HTTPS.

BitTorrent 370000 62 2756 781088 74 2146

DNS 40000 500 19754 42407 529 20969

HTTP 2500000 502 26735 3653539 2086 112191

HTTPS 200000 111 4894 204626 98 5048

20000 495 9 29747 742 2

Skype 20000 497 3 709275 17713 14

Training Testing
Packets Signatures Endpoints Packets Signatures Endpoints

OpenVPN

EVALUATION

In order to evaluate the impact of the main algorithm modifications (see 2.1.3.), the

test was repeated 3 times, with different spid options (see 3.4.4.):

1. The thesis version: all default options.

2. The original KISS with EWMA reconciliation algorithm: --kiss-std

3. The original KISS algorithm: --kiss-std –-verdict-simple --verdict-

threshold=0

Table 4.4 presents obtained results.

4.2.3. Test 3: unknown protocol detection

In Test 3, the previous test was repeated, but this time the training traces of HTTP and

DNS were removed, i.e. the system was not trained to detect these protocols. In the testing

traces, they were marked as “unknown” and the whole evaluation procedure was run once

again. Results presented in Table 4.5.

50

Table 4.4: Test 2 results. Algorithm modifications affect system performance.

KISS+ KISS
%TP %FP %TP %FP %TP %FP
100.00 0.00 100.00 0.00 100.00 0.00

Skype 88.89 0.00 88.89 0.00 88.89 0.00

DNS 100.00 0.00 100.00 0.00 100.00 0.00

IP-TV 100.00 0.00 94.29 0.00 95.71 0.23

BitTorrent 100.00 0.00 100.00 0.40 50.00 0.90

HTTP 99.75 0.00 98.77 0.55 99.39 1.10

HTTPS 96.43 0.00 96.43 0.00 96.43 0.00

AVERAGE 97.87 0.00 96.91 0.14 90.06 0.32

KISS with EWMA

OpenVPN

Table 4.5: Test 3 results. Presence of applications unknown to the system affects the results.

KISS+ KISS
%TP %FP %TP %FP %TP %FP

100.00 0.00 100.00 0.00 100.00 0.00

Skype 88.89 0.00 88.89 0.00 88.89 0.00

IP-TV 100.00 9.04 94.29 91.14 95.71 94.99

BitTorrent 100.00 0.20 0.00 0.40 50.00 1.10

HTTPS 96.43 0.00 96.43 0.00 96.43 0.00

AVERAGE 97.06 1.85 75.92 18.31 86.21 19.22

KISS with EWMA

OpenVPN

4.2.Results

4.2.4. Test 4: processing speed

The goal of Test 4 was to experimentally evaluate processing speed of the system,

giving insight into the following questions:

1. What is the processing speed of the system, i.e. the time needed for classifying

given number of IP packets?

2. What does the speed depend on?

All tests were run on a low-power laptop computer, with an Intel Pentium M 1.80GHz

CPU and 1 GB of RAM, under Ubuntu 11.04 Linux distribution. An assumption is made,

that the operating memory is big enough so that all system variables reside in RAM, i.e.

there is no swapping.

First, the experiment from Test 1 was repeated, but for each value of N the spid

program was run 10 times in a row. For each N, the total elapsed wall-clock time was

measured using a UNIX tool of time(1). Table 4.6 presents obtained results. Its third

column “Average” holds the average time needed for single execution of spid.

Then, another experiment was performed. The system was trained using the

signature database from Test 1 for N=500. All packet traces introduced in section 4.1 were

merged. From this merged file, several smaller files were generated, by extracting the first

K = 100000, 200000, ..., 1000000 of its packets.

51

Table 4.6: Program run time versus number of training
signatures. First column shows number of training
signatures for each of 4 applications.

Total run time
number

5 44 4.40
10 44 4.40
25 45 4.50
50 44 4.40
100 44 4.40
250 45 4.50
500 44 4.40

4.43

Signatures Average
seconds seconds

Average

EVALUATION

For increasing values of K, the spid program was run 10 times in a row. Again, the

time(1) tool was used to measure the total elapsed wall clock time needed for

classification.

Table 4.7 present obtained results. Fig. 4.2 graphically shows the dependence of time

needed for single execution on K.

Table 4.7: Program run time versus number of packets.

52

Fig. 4.2: Average run time versus number of IP packets.

Packets File size Total run time Average Average pps Average bps
number MB seconds seconds pps x 1000 Mbps

100000 10 10 1.00 100.00 80.00
200000 21 18 1.80 111.11 93.33
300000 51 29 2.90 103.45 140.69
400000 79 41 4.10 97.56 154.15
500000 104 50 5.00 100.00 166.40
600000 127 60 6.00 100.00 169.33
700000 143 72 7.20 97.22 158.89
800000 150 86 8.60 93.02 139.53
900000 157 95 9.50 94.74 132.21
1000000 167 101 10.10 99.01 132.28

Average 99.61 136.68

4.3.Discussion

4.3.Discussion

4.3.1. Test 1

The system apparently needs a few hundred signatures in order to learn a particular

application identity. The minimal number of signatures varies and depends on the protocol.

For most applications, even 10 signatures were enough. However, results for 25 and more

signatures revealed that the system needs at least 500 signatures for stable operation and

consistent results, i.e. %TP close to 100 while keeping %FP close to 0.

Comparing to sect. V-E of [Fin09], the %FP metric is quite low, most probably due to

modifications made to the KISS algorithm (2.1.3.). However, direct result comparison is

impossible because the system classifies endpoints instead of flows (recall 2.1.3.1).

4.3.2. Test 2

The test of overall performance gave a very good result of average %TP=97.87 and

%FP=0.00. The %TPSkype=88.89 could probably be improved by using greater number of

training samples.

For experiments without the thesis modifications made to the main algorithm,

relatively worse results were obtained. Indeed, signature extensions (recall 2.1.3.2) let for

about 1% of improvement, whereas the EWMA classification reconciliation algorithm (see

2.1.3.3) combined with the unknown protocol detection (see 2.1.3.4) brought a 6%

improvement to %TP.

4.3.3. Test 3

In Test 3, the system was able to properly detect unknown protocols, with only a

0.81% worse %TP metric and a 1.85% increase in %FP.

Again, compared to the original KISS algorithm, the thesis system produced much

better results. In case of experiment without signature extensions, results of %TP=75.92

and %FP=18.31 were obtained.

53

EVALUATION

However, such comparison is unfair, as the original algorithm relies on relatively

good-quality “Background” traffic for the training phase.

4.3.4. Test 4

On a low powered machine the system was able to handle 136.68Mbps and almost 100

000 packets per second, on average. This roughly means that one packet is handled in

10μs.

Processing time seems to linearly depend on the number of packets for classification.

It does not depend on the number of training signatures, which is a great advantage of the

libsvm library and SVM in general.

54

5.CONCLUSIONS

5. CONCLUSIONS

1. In the thesis a practical system for statistical classification of IP traffic was

implemented. The system fulfils the thesis goals set in section 1.2. In particular, it

works in real-time, under control of the Linux operating system.

2. Resultant software is portable, fast and embeddable. It is implemented in C

language as a single-threaded software library. It has a modular architecture based

on an event loop.

3. The system can simultaneously: handle off-line and live traffic sources, classify

new packets, learn new applications, and evaluate system performance.

4. Application of the modified KISS algorithm allowed to achieve classification

performance results of %TP=97.87 and %FP=0, on average. This is consistent with

the results claimed by the algorithm authors (see 2.1).

5. Modifications of the KISS algorithm proposed in the thesis resulted in better

classification performance.

6. Application of SVM class membership probability resulted in an alternative method

for detection of unknown protocols. This is an improvement compared to the

original KISS algorithm, in which a special “Background” traffic class is required

in such case.

7. SVM model generation process was optimized using a queue of training vectors.

8. A several hundred training signatures of a particular application are required in

order to achieve good results. For UDP, 40-80 packets are required on average to

form a signature. For TCP, 2000-9000 packets.

9. The system was able to properly recognize applications which use encryption,

particularly Skype, OpenVPN, HTTPS, and a proprietary IP-TV application. No

protocol reverse-engineering was required in order to train the system to do so.

10. On a low-powered machine, the system achieved average processing speed of

almost 100 000 packets per second and over 130Mbps.

55

SUMMARY

6. SUMMARY

The thesis presented a practical system for statistical classification of IP traffic. Two

novel algorithms were applied, extended and implemented. The system was written in C

language, in a portable and flexible manner as a software library. Evaluation of the

resultant software performance yielded very good results, in terms of quality and

processing speed, achieving %TP>97 and %FP=0 on average.

Results introduced by the thesis answer positively to the question on applicability of

statistical traffic classification in practice. The system works in real-time, under the Linux

operating system, which is very popular amongst small and mid-sized Internet Service

Providers. It can be trained to recognize new kinds of traffic in a timely manner.

However, further work is needed in order to overcome some limitations. In particular,

the algorithm implemented in the thesis is able to classify only about 5% of Internet

endpoints, yet carrying more than 98% of bytes. Probably, a solution covering the whole

problem area would need to combine several methods.

Moreover, another problem that the research community has to solve is a common set

of traffic samples. They are crucial for evaluation of classification performance. Currently,

a usual situation is that each research group introduces its own input data set. Thus,

comparison of their results – and proposed classification methods – is often difficult.

Traffic classification has numerous applications. It can be used as the fundamental

element of traffic shaping systems, firewalls, intrusion detection systems, network

maintenance tools, and much more. For instance, the thesis software could be used in a

highly congested network in order to prioritize Skype traffic and improve voice quality.

56

7.APPENDIX: IMPLEMENTATION DETAILS

7. APPENDIX: IMPLEMENTATION

DETAILS

7.1. libspi data structures

7.1.1. Main structure: struct spi

Structure members:

• mm: used for memory management by the libasn library

• options: stores run-time program options

• running: holds true if the program is currently inside an iteration of the main

loop, false otherwise

• quitting: used for breaking the main loop; if the value is true, then libspi will

exit on its next iteration

• eb: a libevent variable holding its main instance data

• evgc: a libevent variable holding the event which schedules the libspi garbage

collector execution

• subscribers: subscribers of internal events; a hash table of struct

spi_subscribers (see 3.3.2.2)

• sources: traffic sources (see 2.2.3); a linked list of struct spi_source (see

3.3.2.3)

• eps: the endpoint table (see 2.2.4); a hash table of struct spi_ep (see 3.3.2.4)

• flows: TCP flow table used for the P limit (see 2.1.1); a hash table of struct

spi_flow; similar to spi.eps

• traindata: training signatures (see 2.2.2); a hash table of struct

spi_signature (see 3.3.2.5)

57

APPENDIX: IMPLEMENTATION DETAILS

• trainqueue: signature database - queue of training signatures (see 2.2.1); a hash

table of struct spi_signatures; it constitutes an intermediate buffer between

signatures in the database and spi.trainqueue

• stats: statistical data used for calculation of system performance metrics; see

3.3.2.7

• cdata: a generic pointer to main algorithm data, in this case struct kissp; see

3.3.2.8

• vdata: a generic pointer to implementation of the complex decision process, in

this case struct verdict; see 3.3.2.9

7.1.2. Internal events: struct spi_subscribers,

spi_event_cb_t and struct spi_event

Members of struct spi_subscribers:

• hl: list of handlers to call when the event is announced; a linked list of

spi_event_cb_t

• ahl: a list of handlers to call after all handlers from hl finish; a linked list of

spi_event_cb_t

• aggstatus: an enumeration for tracking the current state of the event in the

system; used for aggregation of multiple event announcements into one round of

handler call; possible values:

◦ SPI_AGG_DISABLED: state tracking disabled

◦ SPI_AGG_READY: no event announcements in the system

◦ SPI_AGG_PENDING: the event was announced and it is pending for being

handled

Arguments of spi_event_cb_t:

• spi: reference on the global instance of struct spi

• evname: name of the event that caused the handler to be called

• arg: optional generic pointer passed during event announcement

A handler returns false if it requests to be unsubscribed from the list of event

handlers. Otherwise, it returns true.

58

7.1.libspi data structures

Members of struct spi_event:

• spi: reference on the global instance of struct spi

• evname: name of the event that was announced

• ss: reference on the relevant entry in spi.subscribers

• arg: optional announcement argument; a generic pointer passed to

spi_event_cb_t

• argfree: decides if the memory pointed by arg should be released after event

handling is finished; value of true enables this functionality

7.1.3. IP traffic: struct spi_source and struct spi_pkt

Members of struct spi_source:

• spi: reference on the global instance of struct spi

• type: type of the source, either:

◦ SPI_SOURCE_FILE: offline source – a packet trace file

◦ SPI_SOURCE_SNIFF: online source – a network interface traffic sniffer

• label: optional application label; if the value is greater than 0, the source can be

used for system training or performance evaluation (recall 2.2.3)

• testing: if true, this source is in testing mode and will be used for performance

evaluation instead of training

• fd: a UNIX file descriptor of the underlying packet source, extracted from

libpcap; the file descriptor is monitored using libevent for new data available for

reading, thus this is the most important, original source of activity in the system

• evread: a libevent variable representing the event of new data available for

reading from fd

• counter: number of IP packets read from the source so far

• signatures: number of signatures extracted from the source so far

• learned: number of source signatures used for training so far

• eps: number of endpoints identified in the source so far

• closed: set to true when source is considered to be closed, e.g. when the end of

packet trace file is encountered

59

APPENDIX: IMPLEMENTATION DETAILS

• as: a union of two structures, used in interchangeable way, depending on the value

of the type member

• as.file: structure used if type is SPI_SOURCE_FILE

◦ pcap: an instance variable of the libpcap library

◦ path: file system path to packet trace file

◦ time: time-stamp of the most recently read IP packet; used as virtual current

moment of time (i.e. “now”), local to the particular traffic source

◦ gctime: value of the time member during last execution of the endpoint table

garbage collector; used in order to schedule the garbage collector using the

virtual time (e.g. once per minute), even if in the reality the file is parsed much

faster (e.g. a virtual week of traffic each second)

• as.sniff: structure used if type is SPI_SOURCE_SNIFF

◦ pcap: an instance variable of the libpcap library

◦ ifname: name of the network interface to capture the traffic on

Members of struct spi_pkt:

• payload: stores first N bytes of the packet payload (recall 2.1.1)

• ts: packet time-stamp; the value has a meaning relative to the traffic source (see

spi_source.as.file.time)

• size: total packet size, in bytes

7.1.4. Endpoints: struct spi_ep

Members of struct spi_ep:

• mm: a memory management object of libasn representing the whole memory

occupied by the endpoint data, including the parent instance of mm

• source: traffic source that caused creation of this endpoint (see 3.3.2.3)

• epa: endpoint address

• last: time-stamp of the last packet registered in this endpoint

• pkts: accumulated packets; a linked list of struct spi_pkt

• gclock: if true, endpoint must not be removed by the garbage collector

• predictions: number of SVM predictions so far

60

7.1.libspi data structures

• verdict: stores current classification verdict (see 3.3.2.5 for spi_label_t)

• verdict_prob: stores probability of verdict; allowed range 0.0 – 1.0

• verdict_count: number of changes of verdict values

• vdata: a generic pointer to endpoint-specific data of the complex decision process

(see 3.3.2.9)

7.1.5. Signatures: struct spi_signature

Members of struct spi_signature:

• label: optional application identity – if not 0, the signature can be utilized for

system training or testing

• c: feature vector; an array of struct spi_coordinate, compatible with struct

svm_node of libsvm (in terms of members and their placement)

◦ index: coordinate number (first coordinate has index of value 1, not 0)

◦ value: coordinate value

7.1.6. Classification results: struct spi_classresult

Members of struct spi_classresult:

• ep: endpoint that generated the input feature vector

• result: SVM classification result; the return value from the

svm_predict_probability() function of libsvm

• cprob_lib: SVM classification probability array; the third argument to the

svm_predict_probability() function

• cprob: SVM classification probability after translation; libsvm can mix the array

indices, so additional translation from the concept of libsvm class to libspi label is

required

7.1.7. Performance evaluation: struct spi_stats

Members of struct spi_stats:

• learned_pkt: number of signatures that were used for system training, coming

from traffic sources

61

APPENDIX: IMPLEMENTATION DETAILS

• learned_tq: number of signatures that were used for system training, coming

from the signature database

• test_all: number of classifications, for which testing information is available

• test_is: like test_all, but for each label separately

• test_ok: number of True classifications

• test_FN: number of False Negatives for each label

• test_FP: number of False Positives for each label

7.1.8. KISS algorithm: struct kissp

Members of struct kissp:

• feature_num: number of coordinates in feature vectors – either 24 (2×N , see

2.1.1) or 28 (extended signature, see 2.1.3.2)

• options.pktstats: if true, enable extended signatures

• svm: gathers data required for handling of the libsvm library

◦ model: the SVM model; output of the svm_train() function

◦ params: libsvm parameters

◦ labels: translation from libsvm class number to libspi label; an array, in

which cell i represents class number i, and its value is the label

◦ nr_class: number of SVM classes, output of the svm_get_nr_class()

function

7.1.9. Complex decision process: struct verdict and struct

ewma_verdict

Members of struct ewma_verdict:

• cprob: endpoint classification probabilities; each array cell holds a separately

calculated EWMA

Members of struct verdict:

• type: chosen method for the final decision

◦ SPI_VERDICT_SIMPLE: use method “Simple”

◦ SPI_VERDICT_EWMA: use method “EWMA” (default)

62

7.1.libspi data structures

◦ SPI_VERDICT_BEST: use method “Best”

• ewma.N: number of samples for EWMA, default 5

7.2. libspi Application Programming Interface

• spi_init(): initialize libspi, see 3.3.3.1; this function must be called before

other functions can be used

◦ returns an initialized instance of struct spi, which must be passed as the first

argument to all other API functions

◦ so arguments: run-time system options; if NULL, default values will be used

• spi_free(): does the opposite to spi_init(), deallocating all memory

occupied by the system

• spi_add(): add a traffic source, see 3.3.3.1

◦ returns 0 on success or a different value in case of an error

◦ arguments:

▪ type: source type

▪ label: source label, may be 0 if unknown

▪ test: if true and label is not 0, source will be used for system testing

▪ args: additional arguments, specific to source type:

• for traffic files, string of format “<path> <filter>”, where:

◦ <path>: path to the traffic file

◦ <filter>: optional libpcap filter in BPF format [BPF]; if not

specified, “tcp or udp” is used

• for network interfaces, string of format “<name> <filter>”, where:

◦ <name>: name of the network interface to capture the traffic on

◦ <filter>: same as for traffic sources

• spi_loop(): make one iteration of the main program loop

◦ returns 0 on success, -1 on temporary error, 1 on permanent error or 2 if

stopping the whole system was requested

• spi_stop(): make a request to stop the main loop

• spi_announce(): announce an internal event

63

APPENDIX: IMPLEMENTATION DETAILS

◦ arguments:

▪ evname: event name

▪ delay_ms: event delay, in milliseconds; if no delay is desired, set to 0

▪ arg: optional event argument

▪ argfree: if true, then the memory pointed by arg will be deallocated

after event handling

• spi_subscribe(): subscribe to an internal event

◦ arguments:

▪ evname: event name

▪ cb: event callback

▪ aggregate: if true, aggregate multiple announcements of the same event

into one, until the first announcement is handled

• spi_train(): add a training signature (see 3.3.3.3)

◦ sign argument: the signature to add; it must have the label member set

• spi_trainqueue(): add a signature to the queue of training signatures (signature

database, see 2.2.1.); does not announce the traindataUpdated event

◦ takes same arguments as in spi_train()

• spi_trainqueue_commit(): move all signatures from the training queue to

training signatures, announcing the traindataUpdated event

• spi_stats_fp(): get the %FP metric for given application identity

◦ returns either a real number in range 0.0-100.0 or -1 if the metric is unavailable

◦ label argument: application identity label

• spi_stats_fn(): like spi_stats_fp(), but returns the %FN metric

7.3. spid data structures

Members of struct source:

• proto: optional name of application identity; if NULL, the traffic source supplies

packets of unknown identity

• cmd: traffic source specification, either:

◦ a file path – the source will be used as SPI_SOURCE_FILE

64

7.3.spid data structures

◦ a network interface name – the source will be used as SPI_SOURCE_SNIFF

• test: if true and proto is not NULL, the source will be used for system testing

Members of struct spid:

• mm: a memory management variable used by libasn

• spi: libspi instance data

• spi_opts: libspi options to pass during its initialization

• proto2label: used for translation from application identity name (e.g. “Skype”)

into a numeric label (e.g. 7); a hashing table

• label2proto: as proto2label, but in the opposite direction

• learn: list of traffic sources for system training; a linked list of struct source

• detect: like learn, but holds traffic sources for classification and system testing

• options: run-time options of spid

7.4.spid data formats

7.4.1. Command-line source specification format

The command-line format for traffic files is presented in a few examples:

1. ./file.pcap

2. smtp:/home/user/file.pcap tcp and port 25

In the first line, a file path relative to the current working directory of the spid process

is given. In the second line, an absolute file path is given, with a BPF [BPF] filter attached,

after a space character. The “smtp:” prefix tells the application identity behind IP packets,

so the source can be used for system training or testing.

For network interfaces, it is:

1. wlan0

2. dns:eth0 udp and port 53

Both lines give the interface name. Optionally, line can be prefixed with application

name and a BPF filter can be attached, as in case of traffic files.

65

APPENDIX: IMPLEMENTATION DETAILS

7.4.2. Packet trace index file format

An index file is used for referencing many traffic files at once. It follows a syntax

similar to the command-line syntax, but the application name prefix is necessary. A few

exemplary lines given on Listing 7.1.

1. # Exemplary packet trace index file.

2. bittorrent /home/user/dumps/bittorrent1.pcap

3. bittorrent /home/user/dumps/bittorrent2.pcap

4. bittorrent-tcp /home/user/dumps/bittorrent-tcp1.pcap

5. dns /home/user/dumps/dns1.pcap

6. dns /home/user/dumps/dns3.pcap

7. http /home/user/dumps/http1.pcap

8. http /home/user/dumps/http2.pcap

9. skype /home/user/dumps/skype1.pcap

Listing 7.1: Exemplary packet trace index file. Comments start with a hash character.

7.4.3. Signature database file format

Signatures (recall 3.3.2.5) are stored in text format, one per line. Each entry begins

with application name, and then coordinate values, separated with spaces, follow.

Exemplary file given on Listing 7.2.

1. bittorrent 0.875 0.875 0.875 0.875 0.871667 0.897333 0.407333

0.407 0.896667 0.872333 0.871667 0.896667 0.872 0.871667 0.872 0.871667

0.875 0.875 0.875 0.875 1 0.875 0.875 0.875 0.0986 0.0237397 0.0285972 2

2. dns 0.0386667 0.0293333 0.0306667 0.02 1 0.466667 1 0.466667 1 1 1

1 1 1 0.649333 1 1 1 0.692 1 1 1 1 1 0.0561667 0.0297895 0.04048 2

3. dns 0.0266667 0.0133333 0.02 0.0186667 1 0.466667 1 0.466667 1 1 1

1 1 1 0.509333 1 1 1 0.658667 1 1 1 1 1 0.0615333 0.0234933 0.0269054 2

4. skype 0.0116667 0.012 0.0163333 0.0136667 1 0.0773333 0.01

0.0143333 0.00933333 0.016 0.00633333 0.00833333 0.0196667 0.0173333

0.01 0.0106667 0.00966667 0.00866667 0.0156667 0.01 0.011 0.012

0.0166667 0.006 0.141983 0.0267949 0.0105065 2

5. skype 0.00866667 0.0123333 0.0146667 0.013 1 0.0753333 0.014

0.00933333 0.0106667 0.0273333 0.00633333 0.007 0.00666667 0.00966667

0.00833333 0.00866667 0.013 0.0123333 0.00833333 0.0143333 0.00633333

0.0223333 0.0143333 0.011 0.150242 0.0148 0.0240926 2

6. openvpn 0.469667 0.922333 0.455667 0.455667 0.455667 0.455667

0.455667 0.973667 0.455667 0.455667 0.469667 0.455667 0.455667 0.455667

0.455667 0.973667 0.455667 0.455667 0.453667 0.973667 0.973667 0.973667

0.973667 0.973667 0.0744583 0.0247179 0.0449351 2

Listing 7.2: Exemplary signature database file. Each line starts with application name.

66

7.4.spid data formats

7.4.4. Endpoint classification output format

New endpoint verdict generates a new line on the standard program output. Example

given on Listing 7.3.

1. $./spid --signdb=test/signdb test/1.pcap

2. 1.pcap: UDP 192.168.7.124:19313 is skype

3. 1.pcap: UDP 149.13.32.247:46822 is skype

4. 1.pcap: UDP 192.168.7.124:50084 is openvpn

5. 1.pcap: UDP 91.200.172.23:1198 is openvpn

6. 1.pcap: TCP 91.197.13.248:80 is http

7. 1.pcap: TCP 212.91.8.233:80 is http

8. 1.pcap: TCP 77.79.214.25:80 is http

9. 1.pcap: TCP 91.197.13.247:80 is http

Listing 7.3: Exemplary spid output. A traffic file ./test/1.pcap is classified.

Each line starts with source name, which is either a shortened file path or an

interface name. This is followed by endpoint address – transport protocol, IP address and

transport protocol port. Finally, name of the recognized application identity is given.

In case the --print-probs command-line option is enabled, program output looks

like on Listing 7.4.

1. $./spid --signdb=test/signdb test/1.pcap --print-probs

2. 1.pcap: UDP 192.168.7.124:19313 is skype 90 1

3. 1.pcap: UDP 149.13.32.247:46822 is skype 100 1

4. 1.pcap: UDP 192.168.7.124:50084 is openvpn 98 1

5. 1.pcap: UDP 91.200.172.23:1198 is openvpn 100 1

6. 1.pcap: TCP 91.197.13.248:80 is http 99 1

7. 1.pcap: TCP 212.91.8.233:80 is http 98 1

8. 1.pcap: TCP 77.79.214.25:80 is http 98 1

9. 1.pcap: TCP 91.197.13.247:80 is http 99 1

Listing 7.4: Program output with probability information. Format enabled by the –print-probs option.

Comparing to the output from Listing 7.3, the last two numbers are respectively the

classification probability and the number of verdict changes made so far for this endpoint.

67

APPENDIX: IMPLEMENTATION DETAILS

7.4.5. Performance metrics output format

In case the --stats command-line option is enabled and adequate testing sources

were provided, the output as on Listing 7.5 will be generated at the end of program

execution.

1. PROTOCOL STATISTICS :

2. dns TP 100% / FP 0% in 9 endpoints

3. bittorrent TP 100% / FP 1% in 10 endpoints

4. skype TP 100% / FP 0% in 2 endpoints

5. openvpn TP 100% / FP 0% in 4 endpoints

6. sopcast TP 100% / FP 0% in 80 endpoints

7. http TP 100% / FP 0% in 20 endpoints

8. bittorrent-tcp TP 50% / FP 0% in 2 endpoints

9. AVERAGE TP 93% / FP 0% in total of 127 endpoints

10. ENDPOINT STATISTICS :

11. valid 126 (99%)

12. invalid 1 (1%)

13. TOTAL 127

Listing 7.5: Program performance metrics output. Functionality enabled by the --stats option.

In the part entitled “PROTOCOL STATISTICS”, the %TP and %FP metrics defined

in section 2.3. are given – for each application identity, and as an average. The last part –

“ENDPOINT STATISTICS” – tells how many valid and invalid classifications the system

made.

68

8.LITERATURE

8. LITERATURE

[RFC791]: J. Postel, Internet Protocol, 1981

[RFC768]: J. Postel, User Datagram Protocol, 1980

[RFC793]: J. Postel, Transmission Control Protocol, 1981

[Fin09]: A. Finamore, M. Mellia, M. Meo, D. Rossi, KISS: Stochastic Packet
Inspection, 2009

[Fin10]: G. Mantia, D. Rossi, A. Finamore, M. Mellia, M. Meo, Stochastic Packet
Inspection for TCP Traffic, 2010

[RFC2474]: K. Nichols, S. Blake, F. Baker and D. Black, Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, 1998

[IUS]: World Internet Users and Population Statistics. Internet World Stats, Retrieved
August 11, 2011, from <http://www.internetworldstats.com/stats.htm>

[Kar04]: Thomas Karagiannis, Andre Broido, Nevil Brownlee, Kimberly C. Claffy,
Michalis Faloutsos, Is P2P dying or just hiding?, 2004

[Ellacoya]: Arbor Networks. Arbor eSeries: Deep Packet Inspection (DPI), Retrieved
August 2011, from <http://www.arbornetworks.com/>

[L7]: Application Layer Packet Classifier for Linux, Retrieved July 2011, from
<http://l7-filter.clearfoundation.com/>

[ODPI]: OpenDPI - The open source deep packet inspection engine, Retrieved August,
2011, from <http://code.google.com/p/opendpi/>

[Kar05]: Karagiannis et al., BLINC: multilevel traffic classification in the dark, 2004

[Cla94]: Kimberly Claire Claffy, Internet traffic characterization, 1994

[Rou04]: M. Roughan et. al., Class-of-service mapping for QoS: a statistical signature-
based approach to IP traffic classification, 2004

[Moo05]: AW Moore et al., Internet traffic classification using bayesian analysis
techniques, 2005

[Zan05]: S. Zander et al., Automated traffic classification and application
identification using machine learning, 2005

[Byu11]: Byungchul Park, James Won-Ki Hong, Young J. Won, Toward Fine-Grained
Traffic Classification, 2011

[Kim08]: H. Kim, et al., Internet Traffic Classification Demystified: Myths, Caveats,
and the Best Practices, 2008

69

LITERATURE

[Sal07]: L. Salgarelli, et al., Comparing traffic classifiers, 2007

[Cor95]: C. Cortes, V. Vapnik, Support-vector networks, 1995

[PCAP]: TCPDUMP/LIBPCAP: public repository, Retrieved June, 2011, from
<http://www.tcpdump.org/>

[Pro00]: libevent, Retrieved August, 2011, from
<http://monkey.org/~provos/libevent/>

[For05]: libasn, Retrieved August, 2011, from <http://labs.asn.pl/asnlibs/wiki/libasn>

[CC01a]: Chang, Chih-Chung and Lin, Chih-Jen, LIBSVM: A library for support
vector machines, 2011

[Tstat]: Tstat project, Retrieved August, 2011, from <http://tstat.tlc.polito.it/traces-
skype.shtml>

[RECIPE]: RECIPE, Retrieved August, 2011, from <http://recipe.dis.unina.it/>

[MIMOSA]: MIMOSA, Retrieved August, 2011, from
<http://risorse.dei.polimi.it/mimosa/index_en.html>

[TstatSkype]: Tstat Skype Testbed Traces, Retrieved August, 2011, from
<http://tstat.tlc.polito.it/traces-skype.shtml>

[TstatIPTV]: Tstat Multicast IP-TV Traces, Retrieved August, 2011, from
<http://tstat.tlc.polito.it/traces-IPTV.shtml>

[BPF]: pcap-filter(7) manual page, Retrieved August, 2011, from
<http://www.manpagez.com/man/7/pcap-filter/>

70

9.SUMMARY IN POLISH

9. SUMMARY IN POLISH

STATYSTYCZNA KLASYFIKACJA RUCHU IP W CZASIE
RZECZYWISTYM W SYSTEMIE OPERACYJNYM LINUX

Streszczenie: Praca prezentuje system statystycznej klasyfikacji ruchu IP
działający w praktyce. Zostały zastosowane i poszerzone dwa nowatorskie
algorytmy oparte o klasyfikację wektorów cech przy użyciu SVM. System
zaimplementowano w języku C w formie biblioteki, która umożliwia zarówno
monitorowanie interfejsów sieciowych w czasie rzeczywistym, jak i pracę w
trybie off-line, przez odczyt plików śladu ruchu. Możliwe jest równoczesne
klasyfikowanie, uczenie systemu i ocena jego wydajności. Otrzymano bardzo
dobre wyniki jakościowe i szybkości przetwarzania pakietów, osiągając
średnio %TP>97 i %FP=0.

STATISTICAL, REAL-TIME CLASSIFICATION OF IP

TRAFFIC IN LINUX OPERATING SYSTEM

Summary: The thesis introduces a practical system for statistical classification
of IP traffic. Two novel algorithms are applied and extended. They are based
on feature vector classification using SVM. A software library written in C
language is presented. Resultant system can monitor network interfaces in real-
time and read off-line packet trace files. Simultaneous classification, system
training, and performance evaluation is possible. The system yields very good
results, in terms of quality and packet processing speed, achieving %TP>97
and %FP=0 on average.

71

	1. INTRODUCTION
	1.1. The problem of Internet traffic classification
	1.2. Thesis goals
	1.3. Review of existing solutions
	1.3.1. Simple methods
	1.3.2. Deep Packet Inspection
	1.3.3. Modern approaches
	1.3.3.1 Traffic features
	1.3.3.2 Classification algorithm

	1.4. Thesis contents

	2. SYSTEM DESCRIPTION
	2.1. Main algorithm
	2.1.1. Feature extraction
	2.1.2. Decision process
	2.1.3. Modifications
	2.1.3.1 Classification objects
	2.1.3.2 Signature extension
	2.1.3.3 Complex decision process
	2.1.3.4 Unknown protocol detection

	2.2. System architecture
	2.2.1. Signature database
	2.2.2. Training signatures and the SVM model
	2.2.3. Traffic sources
	2.2.4. Endpoint table
	2.2.5. Feature extraction and the decision process
	2.2.6. Classification results

	2.3. Methodology

	3. IMPLEMENTATION
	3.1. Architecture
	3.2. External libraries and facilities
	3.3. Main program: the libspi library
	3.3.1. File list
	3.3.2. Data structures and variables
	3.3.2.1 Main structure: struct spi
	3.3.2.2 Internal events: spi.subscribers, struct spi_subscribers, spi_event_cb_t and struct spi_event
	3.3.2.3 IP traffic: struct spi_source, spi_source_t and struct spi_pkt
	3.3.2.4 Endpoints: spi_epaddr_t, spi.eps, and struct spi_ep
	3.3.2.5 Signatures: struct spi_signature and spi_label_t
	3.3.2.6 Classification results: struct spi_classresult and spi_cprob_t
	3.3.2.7 Performance evaluation: struct spi_stats
	3.3.2.8 KISS algorithm: struct kissp
	3.3.2.9 Complex decision process: struct verdict and struct ewma_verdict

	3.3.3. Control flow and events
	3.3.3.1 System initialization
	3.3.3.2 Route of a packet
	3.3.3.3 System training

	3.3.4. Application Programming Interface

	3.4. Front-end: the spid program
	3.4.1. File list
	3.4.2. Data structures
	3.4.3. Control flow and communication with libspi
	3.4.4. User interface

	4. EVALUATION
	4.1. Datasets
	4.2. Results
	4.2.1. Test 1: performance vs. training set size
	4.2.2. Test 2: overall system performance
	4.2.3. Test 3: unknown protocol detection
	4.2.4. Test 4: processing speed

	4.3. Discussion
	4.3.1. Test 1
	4.3.2. Test 2
	4.3.3. Test 3
	4.3.4. Test 4

	5. CONCLUSIONS
	6. SUMMARY
	7. APPENDIX: IMPLEMENTATION DETAILS
	7.1. libspi data structures
	7.1.1. Main structure: struct spi
	7.1.2. Internal events: struct spi_subscribers, spi_event_cb_t and struct spi_event
	7.1.3. IP traffic: struct spi_source and struct spi_pkt
	7.1.4. Endpoints: struct spi_ep
	7.1.5. Signatures: struct spi_signature
	7.1.6. Classification results: struct spi_classresult
	7.1.7. Performance evaluation: struct spi_stats
	7.1.8. KISS algorithm: struct kissp
	7.1.9. Complex decision process: struct verdict and struct ewma_verdict

	7.2. libspi Application Programming Interface
	7.3. spid data structures
	7.4. spid data formats
	7.4.1. Command-line source specification format
	7.4.2. Packet trace index file format
	7.4.3. Signature database file format
	7.4.4. Endpoint classification output format
	7.4.5. Performance metrics output format

	8. LITERATURE
	9. SUMMARY IN POLISH

