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1.INTRODUCTION 

1. INTRODUCTION 

The Internet has been constantly evolving since its inception. For more than a decade 

it  has  been  growing in  capacity  and  versatility  with  a  great  pace,  often  requiring  the 

Internet Service Providers to update and extend their infrastructure in a timely manner.

These changes are connected with the inventions of new kinds of computer software, 

which in turn generate new types of network traffic. However, the fundamental protocol of 

the  Internet  –  the  IP  protocol  –  does  not  provide  a  robust  and  universal  mean  to 

differentiate one traffic type from another. Thus, identification of a particular application in 

Internet transmissions is not a trivial task, yet it is very important.

For instance, a typical Internet end-user demands a safe and fast Internet access. An 

Internet Service Provider which is to fulfil such a requirement must be able to monitor the 

traffic for potential threats and to impose a proper prioritization on the traffic. Moreover, 

there are political and research organizations which monitor the global Internet. Observing 

the share of P2P traffic in Internet transmissions of a particular country could reveal trends 

in its society. Work in these areas cannot be done without a reliable source of information. 

A fundamental  question  remains:  given  an  Internet  transmission,  what  is  the  name of 

application that produced it? This is the problem of traffic classification.

This thesis proposes a practical implementation of a possible solution to this problem 

and presents its performance evaluation results.

This chapter introduces the problem of traffic classification (section  1.1), reviews its 

existing solutions (section 1.3), and formulates the thesis goals (section 1.2).
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INTRODUCTION 

1.1.The problem of Internet traffic classification

Communication in the Internet follows the Internet Protocol (IP) [RFC791]. Basically, 

on  top  of  IP,  there  are  User  Datagram Protocol (UDP)  [RFC768] and  Transmission 

Control Protocol (TCP) [RFC793], both of which being Transmission Protocols (TP). A 

single IP transmission connects two application  processes, often running on two distant 

hosts (general concept presented on Fig. 1.1). Between these two hosts there is the Internet, 

comprised of intermediary hosts, called routers.

The  host  Operating  System (OS)  provides  an  Application  Programming  Interface 

(API), through which a process can send (and receive) data in a simple manner, basically 

of arbitrary length and format.

6

Fig. 1.1: General concept of Internet communication. Three processes (HTTP,  
Skype and DNS) running on “Client” host contact their respective  
counterparts running on remote “Server” host using the Internet.
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This API facility is thus a kind of a proxy between the process and the Internet. It 

handles the operation of putting the data into well-formed IP packets, which often means 

dividing  the  stream of  application  data  into  many  IP  packets.  This  operation  has  the 

following implications, depicted on Fig. 1.2:

1. Application identity is lost.

2. Packets can go different routes.

Moreover, at a single time instant, a router has direct access only to the contents of a 

single packet. This all leaves Internet operators with very little information on the traffic 

passing through their infrastructure.  For this reason, a useful approach is to look at the 

traffic from a more distant perspective.

The IP protocol defines a header part in its packet, having several fields, including:

1. source IP address,

2. destination IP address,

3. desired transport protocol.

7

Fig.  1.2:  Process  data  leaving the host  boundary. Data of  a  single  Skype  
process is divided into IP packets and enters the Internet using two  
different routes.



INTRODUCTION 

Similarly, Transport Protocol header carries:

4. source port number,

5. destination port number.

A group of packets having the same tuple of fields {1, 2, 3, 4, 5} is called a flow. It has 

a useful property that each packet in a flow belongs to the same transmission and thus was 

generated by the same application (and by the same two processes). Analysis of flows is a 

convenient  way  of  looking  at  IP  traffic,  which  allows  to  gather  some  statistical 

characteristics,  like  the  average  packet  size,  flow  duration,  bit  rate,  etc.  However, 

application names are still unknown, as presented on Fig. 1.3.

Finally,  the  problem  of  Internet  traffic  classification  can  be  formulated  by  the 

question: given IP packets, what is the identity of application that sent them?

An answer to this question is called a classification verdict. Usually, it is issued for a 

whole flow, which indirectly leads to classification of single IP packets. However, limited 

solutions to direct classification of single packets also exist (see  1.3.1). The concept of 

application  identity is  quite  broad.  It  can  span  from  rough  application  type  (e.g. 

8

Fig. 1.3: Groups of packets collected in flows. The identity of applications is  
still unknown.
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“streaming”)  to  detailed  program name  and  version  (e.g.  “Skype  v.  2.5.3”),  and  it  is 

directly connected with information on characteristics of the traffic that it represents. The 

term  application –  apart  from typical  computer  programs  –  can  also  include  viruses, 

misconfigured or misbehaving software, etc.  Indeed, traffic classification is a process of 

associating groups of IP packets with application identities.

1.2.Thesis goals

The aim of this work is to provide a practical implementation of a traffic classifier. For 

the main algorithm, two novel, complementary methods will be used, published in:

• KISS: Stochastic Packet Inspection Classifier for UDP Traffic [Fin09]

• Stochastic Packet Inspection for TCP Traffic [Fin10]

Minor modifications and extensions will be made to these methods (see 2.1.3) in order 

to make the resultant system more suitable for practical usage as a firewall element and to 

increase its performance. Application of the final system will be limited to about 5% of 

Internet endpoints, but carrying more than 98% of bytes (see 2.1).

Result of the thesis is a computer program, with the following characteristics:

• Support for the TCP and UDP protocols.

• Written in C language.

• Operation under the GNU/Linux environment.

• Simultaneous offline and real-time classification.

• Simultaneous training, classification, and performance testing.

• Classification through Support Vector Machines.

• Support for the popular “PCAP” format of IP traffic trace files.

For  instance,  using  the thesis  program,  operator  of  a  Linux router  will  be able  to 

classify the network traffic passing through his infrastructure. First, the program will be 

trained  with  traffic  samples  of  known applications,  and  then  the  system will  monitor 

chosen network interfaces in real-time. Finally, each time a trustworthy classification is 

made, the program will emit an adequate message.
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1.3.Review of existing solutions 

1.3.1. Simple methods

An Internet application has some standard ways of putting a kind of a label on its 

packets.  Such  label  can  be  used  to  determine  the  application  identity  and  to  make 

assumptions and predictions on the transmission characteristics.

These standard methods are:

1. Usage  of  a  well-known  TP  port  number.  Application  of  a  port-protocol 

association database enables classification, e.g. destination port 80 could mean an 

HTTP browser.

2. Usage of the  Type of Service (ToS) field of the IP header. Its value can tell 

the transmission characteristics, e.g. value of 000100002 is a low delay traffic, like 

a  VoIP  transmission.  The  ToS  field  was  updated  and  replaced  by  the 

Differentiated Services Code Point (DSCP) in [RFC2474].

Both methods are limited. Port number has space of 16 bits, what gives an upper limit 

of well below 105. Similarly, length of the ToS field bounds the number of traffic types 

well below 103. By contrast, there are more than 2 x 109 users of the Internet worldwide, as 

of  March  2011  [IUS].  Each  user  has  his  favourite  set  of  applications  and own usage 

patterns.

Moreover, these methods base on knowledge which is local to the host and its close 

neighbourhood.  For  example,  an application  requesting  a  low-delay  transmission  for  a 

BitTorrent  download  may  not  deserve  such  prioritization  compared  to  the  needs  and 

resources  of  the  global  Internet.  What  is  more,  a  frequent  practice  is  to  establish 

interpretations  of  the  DSCP field  for  the  whole  Autonomous  System (AS)  or  Internet  

Exchange point (IX). Thus, the meaning of a DSCP value changes as IP packet traverses 

the Internet. This value may be interpreted differently in different parts of the world.

Finally, neither usage of a well-known port nor setting the DSCP value is mandatory. 

All these deficiencies rendered both methods obsolete. They must not be used as a source 

of reliable, accurate, and Internet-wide source of information [Kar04].
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Still, these simple methods, especially the port-based classification, have some limited 

application areas and can produce meaningful results under some conditions. Its greatest 

advantage is that it is stateless and can immediately classify each single IP packet.

1.3.2. Deep Packet Inspection

The growth of  Peer-to-Peer  traffic (P2P), streaming media applications and viruses 

unveiled inadequacy of relying on simple methods for traffic classification. The Internet 

industry had to invent better techniques.

The most straight-forward solution is to inspect the packet payload for well-known 

patterns. A router having a database of patterns would then search the contents of each 

packet for a match against the database. Such approach is called  Deep Packet Inspection 

(DPI).  Real-world  solutions  using  this  technique  exist  both  in  the  commercial  world 

[Ellacoya] and in the open source community [L7], [ODPI].

DPI  has  a  serious  drawback  –  it  is  effectively  useless  if  the  application  uses 

encryption. Moreover, analysis of the packet contents brings user privacy issues. Search 

for a complicated pattern in each packet can be computationally expensive. The database 

of patterns needs to be constantly kept up-to-date, and each new protocol signature has to 

be manually analysed and extracted by a skilled engineer before it can be used.

However,  DPI methods  can  be very accurate  and seem to  be  the  current  industry 

standard. For researchers, they are often a basis for comparison of new methods [Kar05].

1.3.3. Modern approaches

Another  approach pursued nowadays is  classification  based on some characteristic 

features – often statistical – of the traffic as a whole.

Such system could, for example, observe the average packet size and inter-packet time 

gaps.  Then,  an inference  engine  would make a  decision  basing on the values  of  these 

statistics  –  either  by  comparing  them  with  thresholds  or  by  using  machine  learning 

techniques. Research efforts in this field were started with a fundamental work dating 1994 

[Cla94], with practical classification systems appearing a decade later  [Rou04],  [Kar05], 

[Moo05], [Zan05]. They all bring promising results.
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Basically,  each of these methods has two discriminating elements:  observed traffic 

features and the classification algorithm.

1.3.3.1 Traffic features

IP packets have many properties. Apart of the ones already introduced, there are also: 

total packet size, time of arrival, sequence number, and many more. One can aggregate 

packets in a flow, but by choosing different tuple elements, many kinds of such traffic 

aggregations  are  possible.  Another  common aggregation  is  host-level,  e.g.  by  tuple  of 

{source IP,  TP}. Then, having a set of packets grouped together according to a common 

criterion, several traffic features can be computed.

On the lowest packet level, features like mean packet size, observed TCP header flags, 

inter-packet time gaps, etc. can be computed. By looking at flow-level characteristics, one 

could analyse mean flow duration, mean data volume per flow, and the variance of these 

metrics  [Rou04]. Another interesting view is a social-level view [Kar05], in which – for 

example – the number of remote locations a host contacts, and average volume of data 

exchange for each of them, could be analysed.

Finally, in the classification method used in this thesis, traffic features are extracted 

from statistical  analysis  of the packet  payload. In  [Fin09], randomness of the first few 

bytes in UDP packet payloads is measured (see  2.1) and used to form a  signature. In a 

recent  work  on  fine-grained  classification  [Byu11],  a  similar  approach  adopting  a 

document  retrieval  technique  is  presented.  Signatures  are  created  from frequencies  of 

keyword occurrences in packet payloads.

1.3.3.2 Classification algorithm

Modern traffic classifiers often use machine learning techniques. In a typical scenario, 

the classifier must be trained before it is able to distinguish one application from another. 

In order to do that, traffic samples of a particular computer program are carefully collected. 

Traffic features are extracted and the data is used for training the classifier.

The number of feature vectors required for training depends on their length and the 

machine  learning  technique  used,  5-10  x  103 being  a  rough  estimation  in  [Kim08]. 

Research efforts tend to use different classification algorithms - Naïve Bayes, Bayesian 
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Networks,  Decision Trees,  k-Nearest  Neighbors  (k-NN), Neural  Networks and Support 

Vector Machines (SVM), with the latter giving the best results.

The  research  community  lacks  a  common  set  of  traffic  samples  [Sal07],  hence 

comparison of different classification algorithms is hard. Even obtaining a single suitable 

training set can be a difficult task. Researchers must fall back on DPI solutions in order to  

annotate the data sets with “ground truth”, i.e. labels with application names [Kar05].

1.4.Thesis contents

Chapter 1 discusses the problem of traffic classification and describes the thesis goals: 

an  introduction  to  the  subject,  basic  definitions,  problem  statement  and  a  review  of 

possible solutions in the existing literature; thesis goals and description of results.

Chapter 2 describes the resultant system in terms of algorithms and design: summary 

of the main KISS algorithm with modifications, general system architecture and methods 

for performance evaluation.

Chapter 3 gives information on software implementation: design decisions, external 

software libraries and descriptions of the libspi library and the spid program.

Chapter 4 presents performance evaluation results.

Chapter 5 concludes the thesis with statements about resultant program quality.

Chapter 6 is a summary on feasibility of practical traffic classification – in general, 

and using the thesis software.

Chapter 7 is an appendix holding implementation details  – documentation of:  data 

structure members, Application Programming Interface, and the user interface of the spid 

program.

Chapter 8 gives thesis bibliography.

Chapter 9 contains thesis subject and summary in Polish and English.
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2.SYSTEM DESCRIPTION

2. SYSTEM DESCRIPTION

The goal of this thesis is implementation of a statistical traffic classification system 

capable of working in real-time.

In order to achieve this, an already existing classification method will be used as the 

main algorithm. It will be extended by several other, original elements required to make it 

a practical real-time system.

For the main algorithm, two complementary methods will be applied, covering TCP 

([Fin10]) and UDP ([Fin09]) protocols, jointly referred to as “the KISS algorithm”. They 

both employ a statistical test similar to the Pearson's Chi-Square test, hence the name of 

“KISS”, standing for Chi-Square Signatures.

The system elements introduced in the thesis cover: obtaining IP traffic, training the 

system, handling the SVM library in an optimal way, and presenting the results.

This  chapter  describes  the  whole  system  from design  point  of  view.  Section  2.1 

characterize  the KISS algorithm with modifications,  section  2.2 gives  a more practical 

view on the system architecture,  while the section  2.3 presents an adequate method for 

performance evaluation of the whole system.
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2.1.Main algorithm

The KISS algorithm is a traffic classifier which observes randomness in first bytes of 

IP packet payloads.

 As the input it takes a set of IP packets. As the output, a set of {endpoint1, label} pairs 

is provided, where label can be used to uniquely determine application identity. Internally, 

the algorithm consists of two stages – feature extraction and decision process – depicted on 

Fig. 2.1.

KISS authors claim very good results of average 99.6% True Positives2 with less than 

1% of False Positives3. However, as it requires at least 80 packets, it is limited to about 5% 

of Internet endpoints, but carrying more than 98.6% of bytes4.

1 Non-standard mode of operation for UDP. See 2.1.3.

2 See 2.3 for definition.

3 For UDP (sect. VII in [Fin09]), with similar but a bit worse results for TCP (sect. V in [Fin10]).

4 Sect. V-H in [Fin09].
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Fig.  2.1:  The KISS algorithm. IP packets enter feature extractor, which feeds the decision  
process, which produce the output.



2.1.Main algorithm

2.1.1. Feature extraction

Feature  extraction  begins  with  queueing  packets  in  endpoints,  that  is,  groups  of 

packets having the same tuple of {IP address, TP protocol, TP port}. For TCP, all packets 

except the first P=5 data segments in TCP sessions are dropped1.

For each queued packet, all data except the first N=12 bytes of packet payload (past 

the TP header) is removed. Each of these N bytes is divided into two halves,  forming 

G=24  groups,  each  of  bit-length  equal  b=4.  Once  C=80  packets  are  gathered  in  an 

endpoint, they form a signature window, a matrix with C rows and G columns, which is 

further processed.

For each possible cell value – which is 0 (00002) till 15 (11112) – the number of its 

occurrences in each column is counted. Result is denoted with Oi
(g ) , where g is the column 

number and i is the value.

Next, each column is summarized with a single value X g , which is a statistical test 

similar to Pearson’s Chi-Square (χ2) test:

X g=∑
i=0

2b
−1 (Oi

(g )
−E )

2

E
(2.1)

The motivation for this is to measure the distance between distribution of observed 

values and the uniform distribution. Its expected value E  is chosen as if all possible group 

values were equally probable:

E=
C

2b
=5 (2.2)

Indeed, a small X g  value means roughly that all out of the 2b  possible group values 

are equally probable in the column g, hence its randomness across C packets is high. For 

instance, it may carry a unique query identifier chosen in a random way for each packet. 

On the other hand, columns carrying constant values – like protocol version numbers – will 

result in high X g  values.

See Sec. III-A in [Fin09] for a detailed discussion.

1 See Sect. III-B in [Fin10].
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Finally, a signature (or a feature vector) is constructed by collecting X g  values from 

all columns:

X̄ =[ X 1, X 2, ... , X G ] (2.3)

This 24-dimensional vector is a very accurate application fingerprint that can be used 

for further classification.

2.1.2. Decision process

The task of the decision process is to reveal the application identity behind a signature.

For this task, KISS uses Support Vector Machines  (SVM) [Cor95], which is a set of 

machine learning techniques that can be used for classification and regression. The general 

idea behind SVM is to rearrange the problem space so that the training samples can be 

easily  separated by hyper-planes.  This is  realized by means of translating the input  N-

dimensional  space  into  a  possibly  infinite-dimensional  space,  maximizing  the  distance 

between hyper-planes and the training sample points.

Before it can be used, SVM needs to be trained with several signatures annotated with 

the target class. As a result of such training process, a  model is generated, which is later 

used for prediction of the proper signature class, which is the output of the KISS decision 

process.

2.1.3. Modifications

A few modifications and extensions were made to the KISS algorithm, for the needs of 

the thesis.

2.1.3.1 Classification objects

Section IV-A of [Fin09] defines two classification entities – a flow and an endpoint. In 

the thesis,  such a modification is  made,  that  packets  are  grouped in endpoints  without 

regard to packet direction. This is contrary to Sec. III-B in [Fin10].

Motivation for this is to weaken the limits mentioned in  2.1. With this modification, 

the requirement of C=80 packets in a signature window can be attained earlier.

18
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2.1.3.2 Signature extension

Feature vectors can be optionally extended with 4 coordinates:

1. Average packet size.

2. Average value of inter-packet time gap (IPT).

Inter-packet time gap is the time that  elapses between two consecutive packets. 

First, an average E and a standard deviation σ of IPT values are calculated. Then, 

outliers are rejected by dropping all values greater than E+1.645σ . This assumes 

that IPT follows the standard distribution and thus rejects about 5% of the input 

values. Finally, the average value is recomputed and used as the coordinate value.

3. Average differences in IPT.

This coordinate holds the average difference between two consecutive IPT values, 

after outlier detection. It is to mimic the concept of packet jitter.

4. Numeric representation of the transport protocol.

Motivation behind introducing these 4 coordinates is to improve the performance of 

the resultant system. Undisturbed values of these “flow-level” characteristics are usually 

available in a typical network scenario, and can contribute to the discriminating power of 

the feature vectors.

2.1.3.3 Complex decision process

In the original algorithm, a single endpoint can be classified many times, once for each 

signature window. In the thesis however, three reconciliation algorithms, as suggested in 

sect. IV-B of [Fin09], were implemented.

1. “Simple” - uses the last classification directly, as in the original algorithm.

2. “Best” - uses the classification with the highest probability so far.

3. “EWMA” - tracks the  Exponentially  Weighted Moving Average of classification 

probability for each possible outcome, and uses the one with the highest value seen 

so far.

19
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2.1.3.4 Unknown protocol detection

A potential drawback of KISS is that it requires good quality “Background” traffic 

samples during the learning phase (sect. V-C in [Fin09]), in order to detect the applications 

that are unknown to the classification system.

In the thesis, this was solved using a special functionality of the  libsvm library (see 

3.2).  For  each  classification,  a  vector  with  relative  class  membership  probability  is 

obtained. The sum of probabilities is always equal 1, so in order to give the vector values 

an  absolute  meaning,  the  difference  between the  first  and the  second highest  value  is 

calculated, and the result is treated as the classification probability. An unknown protocol 

is detected by introducing a simple threshold mechanism. If the classification probability is 

below the threshold, classification is considered “not certain enough” and rejected.

2.2.System architecture

Previous section describes the main algorithm with its two stages of feature extraction 

and decision process. In order to implement it as a practical system, these stages have to be 

decomposed, and the whole algorithm needs to be complemented with a few elements, as 

presented on Fig. 2.2.

20

Fig. 2.2: General system architecture. System elements presented in blue. Arrows show data paths,  
with data kinds as red labels. Dashed arrows represent paths used for system training.  
Green frame roughly shows elements defined in the original KISS algorithm.



2.2.System architecture

The system consists of the following elements:

1. Signature database

2. Training signatures

3. SVM model

4. Traffic sources

5. Endpoint table

6. Feature extraction

7. Decision process

8. Classification results

Following subsections describe these components.

2.2.1. Signature database

The process of obtaining signatures from IP packets can be computationally intensive 

(recall  2.1.1).  For  instance,  if  one  wants  to  train  the  system so  it  is  able  to  properly 

recognize  20  applications,  for  good-quality  results  about  500  signatures  need  to  be 

extracted for each of them, giving a total of almost 1 million packets.

This “knowledge” of the system is lost once the program is terminated. However, the 

process  of  learning  it  once  again  can  be  sped  up  by  saving  the  extracted  signatures 

(annotated with labels) on a hard disk. Hence, the next time the program is run, no time-

consuming packet analysis is required. Signatures are immediately loaded into the program 

memory.

This is the task of the Signature database. It reads signatures from hard disk and feeds 

them  into  the  Training  signatures  element.  Furthermore,  new  signatures  that  will  be 

obtained  through  IP  packet  analysis  during  program  execution  will  be  stored  in  the 

database, too.

2.2.2. Training signatures and the SVM model

Before  SVM is  able  to  make  classifications,  it  needs  to  be  trained  with  samples 

annotated with the target class (recall 2.1.2). This is also a computationally intensive task. 
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Moreover,  the  model  can  not  be  incrementally  updated.  Even  a  single  new  learning 

signature can cause the whole model to be recomputed. In a real-time system, this could 

happen many times per second.

The task of the Training signatures element is to be a kind of a buffer to the SVM 

model update process. It ensures that the model is recomputed at most once per specified 

amount of time, e.g. 10 seconds. Thus, there is a chance that several new signatures are 

buffered before the update process is run.

2.2.3. Traffic sources

Traffic sources supply the system with IP packets. For off-line classification, it is a file 

with IP packets stored in the PCAP format [PCAP]. For real-time operation, it is a network 

interface – e.g. an Ethernet NIC – on which all the traffic passing through it is captured.

The task of this element is to provide an interface to access these underlying packet 

sources  in  a  common  way.  At  the  same  time,  many  packet  sources  can  work 

simultaneously, some of which being off-line sources, and some real-time. All packets are 

passed to the Endpoint table.

Usually, a traffic source supplies packets of unknown applications. If the application is 

known, packets are used for training. In such case, they do not enter the Decision process, 

but supplement  the Training signatures.  Alternatively,  they follow the standard path of 

classification, but the Classification results element will verify if the system produced a 

valid answer, thus giving an insight into the system performance.

2.2.4. Endpoint table

The Endpoint table element is the central component of the whole system. It has two 

fundamental  tasks  of  gathering  IP  packets  in  groups  of  endpoints  and  collecting 

classification decisions made on them.

Special care needs to be taken for off-line packet sources. It may happen, that packets 

stored in two files are distant in time – for instance, packets captured in year 2011 and 

2008. For this reason, packets from two off-line sources can not be grouped together in a 

single endpoint. For real-time sources, this is allowed.
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The table is periodically swept by a garbage collector, which removes all endpoints, 

for which the last packet is older than 5 minutes. For off-line sources, the time distance to 

the last packet received from this source is checked.

The Endpoint table feeds the Feature extraction element once at least C=80 packets 

(see 2.1.1) are collected in a single endpoint.

2.2.5. Feature extraction and the decision process

The task of these two elements was described in section 2.1. Decision process requires 

an already prepared, valid SVM model. If it is absent, no classification can be made.

The result is stored in the Endpoint table as an endpoint property. Whenever the value 

of this property changes, the Classification results element is notified. 

2.2.6. Classification results

The task of this element is to inform the system user that an application identity was 

recognized at a given Internet endpoint. The resultant numeric label used internally (e.g. 

“7”) is translated into string representation (e.g. “Skype”). Name of the traffic source is 

also given (e.g. “eth0” or “~/traces/skype.pcap”). In case the application behind the traffic 

source is known, the result will be verified and used to compute the system performance 

metrics.

2.3.Methodology

There are two possible kinds of a traffic classifier output – its result is either valid or 

invalid.  This  will  be the fundamental  field  of  performance evaluation  in  the  thesis,  as 

described below (based on [Fin09]).

Two notions of a True/False and a Positive/Negative need to be presented. Endpoint 

classification is True if it is valid, and False otherwise. All classifications belonging to the 

particular application identity are Positive, and others are Negative. Thus, classifier output 

can be either a True Positive (TP) or True Negative (TN) if it is valid, and False Positive  

(FP) or False Negative (FN) otherwise.

Now, four metrics can be introduced:
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• False Positive Percentage for application identity x

%FP x=100⋅
FP x

s̄x

(1.1)

◦ FP x  is number of False Positives for x

◦ s̄x  is number of endpoints not belonging to x

• False Negative Percentage for x

%FN x=100⋅
FN x

sx

(1.2)

◦ FN x  is number of False Negatives for x

◦ sx  is number of endpoints belonging to x

• True Positive Percentage for x is %TP x=100−%FN x (1.3)

• True Negative Percentage for x is %TN x=100−%FP x (1.4)

For instance, if there are 100 “Skype” endpoints and the classifier says 10 of them are 

“BitTorrent”, then %FN Skype=10 .

Finally, the system performance can be evaluated using traffic samples of applications, 

whose identities are already known. This knowledge of true application identities is called 

ground truth. It can be obtained in several ways, for instance using a DPI packet classifier 

like [L7] or a simple TP port classifier.

Samples  are  fed  into  the  system  and  the  result  is  compared  to  the  ground  truth. 

Observation  of  two  metrics  –  %TP  and  %FP  –  and  their  statistics  allows  to  make 

conclusions on the performance of the system. A well-performing system is characterized 

by high %TP values while keeping the %FP metric as low as possible.
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3. IMPLEMENTATION

A  real-time traffic  classification  system requires  a robust and fast  implementation. 

Nowadays, backbone links of ISP companies often carry hundreds of thousands of packets 

per second. This gives just a few microseconds for handling each packet.

Moreover, the goal of the thesis is to provide a practical system. Thus, it needs to be 

directly usable for many tasks. This includes application at a typical ISP company, which 

wants to e.g. block P2P traffic and computer viruses, while prioritizing Internet telephony. 

In such scenario, resultant software will be just a constituent element of a greater firewall 

system. On the other hand, a government  agency whose mission is to discover society 

trends, will most likely want to work on sets of off-line traffic files, probably in a graphical 

environment.  Again, the classification element will be just a part of a GUI application. 

These  two  examples  show  that  an  implementation  of  a  traffic  classifier  needs  to  be 

flexible, portable and embeddable.

The  system  introduced  in  the  thesis  works  under  Linux  operating  system,  which 

belongs to the family of UNIX-like systems and heavily relies on Open Source software. 

This implicitly means that the implementation needs to obey the rules set by other open 

source systems, and by general guidelines for programs working in UNIX environments.

This chapter discusses implementation of the thesis  software in detail.  Section  3.1. 

gives an introductory view on the program architecture,  section  3.2. references external 

libraries that the system relies on. Sections 3.3. and 3.4. give detailed documentation of the 

source code.
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3.1.Architecture

The system is entirely implemented in C language under the Linux operating system, 

on a  PC system. However,  this  does not pose a  tight  limit  on the area  of  its  possible 

applications. It would require little or no modification to port the system to another UNIX-

like platform, including embedded systems.

The system works as a single-threaded process with one global event loop. The loop is 

used for external communication and for exchange of internal messages. Such architecture 

enables quasi-parallel processing. For instance, handling incoming IP packets is possible 

while making classification decisions at the same time.

Compared to a multi-threaded architecture, such approach greatly simplifies the whole 

system, but under  some circumstances  it  might  cause higher  latency,  i.e.  the time that 

lapses between the moment in which a new packet enters the system and the event of its 

classification. Specifically, this would happen on a multiprocessor machine. However, in 

such  case,  each  CPU could  be  assigned  different  part  of  the  IP  addressing  space,  as 

presented on Fig. 3.1.
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3.1.Architecture

Functionality of the system is divided into multiple modules. In many cases, no direct 

procedure call is possible between the modules. Instead, a notification mechanism is used 

in  which  one  functional  element  informs  another,  for  example,  that  a  new  signature 

window  is  ready  to  be  classified.  This  is  realized  by  means  of  internal  events (or 

messages), transported by the main program loop. The source module announces that some 

event  happened,  while  there  can be any number of  subscribers,  which will  handle  the 

event, with some time delay. Event announcements are queued, so this delay depends on 

the current queue length and its processing speed.

Still,  program  modules  can  write  to  shared  memory,  so  there  is  a  direct  data 

communication path by means of variables. No locking or synchronization mechanisms are 

needed,  as the program is  single-threaded.  Indeed, all  modules  have direct  access to a 

common instance of the fundamental data structure: struct spi (see 3.3.2.1).

The classification system is almost entirely implemented as a library,  called  libspi, 

where “spi”  stands for  Statistical  Packet  Inspection.  A simple command-line  front-end 

program utilizing this library was also created, named spid.

Modular architecture of the system lets for replacement of the main algorithm (i.e. the 

feature  extraction  phase  and  the  basic  decision  process,  2.1)  and  the  reconciliation 

algorithm (i.e. the complex decision process, 2.1.3.3). Special efforts were made in order to 

make such a potential modification to the system easy and straightforward.

3.2.External libraries and facilities

The system relies on several external components.

For implementation of the main program loop, the libevent [Pro00] library is used. It 

handles the task of monitoring traffic sources for new packets, periodically executes the 

endpoint table garbage collector and is used as a queue for internal events.

The network traffic is obtained via the  libpcap library  [PCAP]. It reads packet trace 

files  and captures  live  traffic  from network interfaces.  However,  the latter  depends on 

packet capture facilities delivered by the operating system, which will deny access to the 

data without adequate privileges.
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As a general tool set, a library based on libasn [For05] is adopted. It provides basic 

data structures of hashing table and linked list, memory management utilities and some 

mathematical functions in form of C pre-processor macros.

For  realization  of  the  SVM decision  process,  a  popular  implementation  of  libsvm 

[CC01a] is  employed.  For  training,  its  svm_train() function  is  used,  and 

svm_predict_probability() for classification with probability output.

3.3.Main program: the libspi library

3.3.1. File list

libspi source code consists of the following files:

• datastructures.h : declarations of data types and structures used throughout the 

system and in the API

• settings.h: holds pre-processor constants used as main algorithm parameters and 

some of the fundamental options of the whole system

• spi.h: declarations of the API – public functions exported by the library

• spi.c:  main  program  (see  3.3.3.1);  implements  initialization  procedure, 

management of traffic sources, internal event system, garbage collector,  training 

signature queues, and memory management routines

• source.h: declares source.c functions that can be called internally

• source.c:  implements  two  traffic  sources;  PCAP  files  and  network  interface 

sniffing via the libpcap library; holds a generic IP packet parser which is the source 

of signature windows

• flow.h: declares flow.c functions that can be called internally

• flow.c: TCP flow table; implements the P limit (recall 2.1.1) and detects RST/FIN 

flags which close connections

• ep.h: declares ep.c functions that can be called internally

• ep.c: the endpoint table; implements storage of new packets
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• kissp.h: declares kissp.c functions and data structures that are used internally

• kissp.c: implements the extended KISS algorithm; connects to the libsvm library

• verdict.h: declares verdict.c functions and data structures

• verdict.c:  implements  the  complex decision  process  (see   2.1.3.3):  “simple”, 

“best” and “EWMA” algorithms; produces final verdict of endpoint classification

3.3.2. Data structures and variables

The  datastructures.h header file contains declarations of data structures, with a 

few  declarations  put  in  kissp.h and  verdict.h files.  This  subsection  gives 

documentation of the most important data structures and their application as variables.

3.3.2.1 Main structure: struct spi

The  struct spi is  a  root  data  structure,  instance  of  which  is  passed  to  every 

function. Conceptually, this is similar to the special variable this used in the C++ object-

oriented programming language.  Every data piece used by the program can be reached 

from this structure. Each instance of struct spi thus represents an instance of the whole 

libspi. Structure synopsis presented on Listing 3.1. See 7.1.1 for details.

1. struct spi {

2.     mmatic *mm;

3.     struct spi_options options;

4.     bool running;

5.     bool quitting;

6.     struct event_base *eb;

7.     struct event *evgc;

8.     thash *subscribers;

9.     tlist *sources;

10.     thash *eps;

11.     thash *flows;

12.     tlist *traindata;

13.     tlist *trainqueue;

14.     struct spi_stats stats;

15.     void *cdata;

16.     void *vdata;

17. };

Listing 3.1: struct spi. Main data structure.
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3.3.2.2 Internal  events:  spi.subscribers,  struct  spi_subscribers, 

spi_event_cb_t and struct spi_event

Inter-module control flow is realized by means of internal events (see 3.1). Each event 

is uniquely identified by its name, e.g.  classifierModelUpdated. Event subscriptions 

are registered in the subscribers member of struct spi, which is a hashing table. For 

table keys, event names are used, so multiple subscriptions to the same event are stored in 

the same place. Each table value is an instance of struct spi_subscribers.

The main task of  struct spi_subscribers is to hold references on event handler 

functions  (so-called  callbacks).  Each  callback  address  is  stored  in  a  data  type  of 

spi_event_cb_t. Synopsis of both of them is given on Listing 3.2. See 7.1.2 for details.

1. struct spi_subscribers {

2.     tlist *hl;

3.     tlist *ahl;

4.     enum spi_aggstatus {

5.         SPI_AGG_DISABLED = 0,

6.         SPI_AGG_READY,

7.         SPI_AGG_PENDING

8.     } aggstatus;

9. };

10. typedef bool spi_event_cb_t(

11.     struct spi *spi,

12.     const char *evname,

13.     void *arg

14. );

Listing  3.2:  struct spi_subscribers and typedef spi_event_cb_t. Structures used for handling of  
internal event subscriptions.

Whenever  an  internal  event  is  announced,  an  instance  of  struct spi_event is 

created,  holding data  which  will  be  later  used  during  event  handling.  This  instance  is 

finally stored in an event queue managed by libevent. Synopsis given on Listing 3.3:

1. struct spi_event {

2.     struct spi *spi;

3.     const char *evname;

4.     struct spi_subscribers *ss;

5.     void *arg;

6.     bool argfree;

7. };

Listing 3.3 struct spi_event. Representation of an event announcement.
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3.3.2.3 IP traffic: struct spi_source, spi_source_t and struct spi_pkt

A traffic source is represented by struct spi_source. It holds information on the 

underlying  libpcap source of packets, packet counters, etc. Source type is represented by 

spi_source_t. Synopsis given on Listing 3.4. Refer to 7.1.3 for details.

1. typedef enum {

2.     SPI_SOURCE_FILE = 1,

3.     SPI_SOURCE_SNIFF

4. } spi_source_t;

5. struct spi_source {

6.     struct spi *spi;

7.     spi_source_t type;

8.     spi_label_t label;

9.     bool testing;

10.     int fd;

11.     struct event *evread;

12.     unsigned int counter;

13.     unsigned int signatures;

14.     unsigned int learned;

15.     unsigned int eps;

16.     bool closed;

17.     union {

18.         struct {

19.             pcap_t *pcap;

20.             const char *path;

21.             struct timeval time;

22.             struct timeval gctime;

23.         } file;

24.         struct {

25.             pcap_t *pcap;

26.             const char *ifname;

27.         } sniff;

28.     } as;

29. };

Listing 3.4 struct spi_source. Representation of a traffic source.

Incoming packets are stored in struct spi_pkt – see Listing 3.5:

1. struct spi_pkt {

2.     uint8_t *payload;

3.     struct timeval ts;

4.     uint16_t size;

5. };

Listing 3.5: struct spi_pkt. Representation of an IP packet.
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3.3.2.4 Endpoints: spi_epaddr_t, spi.eps, and struct spi_ep

Each endpoint can be uniquely identified by a tuple of {TP protocol, IP address, TP 

port}.  In source code,  such tuple – referred to as an  endpoint address – is stored in a 

special variable type of spi_epaddr_t.

The spi.eps hash table tracks all active endpoints. As table keys, endpoint addresses 

are used, and table values are instances of struct spi_ep. This structure gathers various 

endpoint  data  –  packet  list  and  classification  verdict  being  the  most  important  ones. 

Synopsis given on Listing 3.6, with details available in 7.1.4.

1. typedef uint64_t spi_epaddr_t;

2. struct spi_ep {

3.     mmatic *mm;

4.     struct spi_source *source;

5.     spi_epaddr_t epa;

6.     struct timeval last;

7.     tlist *pkts;

8.     bool gclock;

9.     uint32_t predictions;

10.     spi_label_t verdict;

11.     double verdict_prob;

12.     uint32_t verdict_count;

13.     void *vdata;

14. };

Listing 3.6: spi_epaddr_t and struct spi_ep. Representation of a traffic endpoint.

The task of  spi_epaddr_t is  to store three constitutive properties  of an endpoint 

address in a single, 64-bit value. In C language, it is constructed in the following way:

1.     spi_epaddr_t epa = (proto << 48) | (ip_addr << 16) | port;

Where proto, ip_addr and port are: the transport protocol, the IPv4 address and the 

TP port, respectively.

3.3.2.5 Signatures: struct spi_signature and spi_label_t

Each application identity  can be uniquely identified by its  numeric label,  which is 

stored in a special data type of spi_label_t – an 8-bit integer. This limits the label range 

to  0  –  255.  Value  of  0  is  regarded  as  “unknown identity”.  Window signature  data  is 

represented by struct spi_signature. Synopsis on Listing 3.7, details in 7.1.5.
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1. typedef uint8_t spi_label_t;

2. struct spi_signature {

3.     spi_label_t label;

4.     struct spi_coordinate { int index; double value; } *c;

5. };

Listing 3.7: spi_label_t and struct spi_signature. Representation of a window signature.

3.3.2.6 Classification results: struct spi_classresult and spi_cprob_t

The  output  of  SVM  classification  is  stored  in  struct  spi_classresult. 

Functionality  of  membership  probability  of  libsvm is  used,  which  requires  additional 

storage  place.  This  is  handled  by  variables  of  spi_cprob_t type.  Synopsis  given  on 

Listing 3.8. See 7.1.6 for details.

1. typedef double spi_cprob_t[SPI_LABEL_MAX + 1];

2. struct spi_classresult {

3.     struct spi_ep *ep;

4.     spi_label_t result;

5.     spi_cprob_t cprob_lib;

6.     spi_cprob_t cprob;

7. };

Listing 3.8: spi_cprob_t and spi_classresult. Representation of SVM classification results.

Indeed, spi_cprob_t is a 256-element array of double. Cell i holds a floating-point 

number in range 0.0 – 1.0: a relative probability that the input vector belongs to class i.

3.3.2.7 Performance evaluation: struct spi_stats

Data  required  for  performance  assessment  (see  2.3)  are  collected  in  struct 

spi_stats. It contains counters, which may be later used for calculation of the %TP and 

%FP metrics. Synopsis given on Listing 3.9, details in 7.1.7.

1. struct spi_stats {

2.     uint32_t learned_pkt;

3.     uint32_t learned_tq;

4.     uint32_t test_all;

5.     uint32_t test_is[SPI_LABEL_MAX + 1];

6.     uint32_t test_ok;

7.     uint32_t test_FN[SPI_LABEL_MAX + 1];

8.     uint32_t test_FP[SPI_LABEL_MAX + 1];

9. };

Listing 3.9: spi_stats. Collection of system performance counters.
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3.3.2.8 KISS algorithm: struct kissp

The system is designed in such a way, that application of a different method for the 

main algorithm would be possible, hence the pointer at spi.cdata is of generic void * 

type. However, it holds a pointer to the structure representing the KISS algorithm used in 

the thesis – struct kissp. Synopsis on Listing 3.10. Refer to 7.1.8 for details.

1. struct kissp {

2.     int feature_num;

3.     struct { bool pktstats; } options;

4.     struct {

5.         struct svm_model *model;

6.         struct svm_parameter params;

7.         int *labels;

8.         int nr_class;

9.     } svm;

10. };

Listing 3.10: struct kissp. Internal data of the modified KISS algorithm.

3.3.2.9 Complex decision process: struct verdict and struct ewma_verdict

The two structures of struct verdict and struct ewma_verdict hold data of the 

reconciliation  algorithm  (see  2.1.3.3)  for  the  whole  system  and  for  each  endpoint, 

respectively. Synopsis given on Listing 3.11, and details in 7.1.9.

1. struct ewma_verdict {

2.     spi_cprob_t cprob;

3. };

4. struct verdict {

5.     enum {

6.         SPI_VERDICT_SIMPLE,

7.         SPI_VERDICT_EWMA,

8.         SPI_VERDICT_BEST

9.     } type;

10.     struct {

11.         uint16_t N;

12.     } ewma;

13. };

Listing 3.11: struct ewma_verdict and struct verdict. Data of the complex decision process.
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3.3.3. Control flow and events

3.3.3.1 System initialization

The  spi.c file  holds  several  important  procedures,  including  the  spi_init() 

function, which implements the task of system initialization (see Fig. 3.2). It prepares an 

instance  of  struct spi which  may  be  further  used.  During  this  process,  the  main 

algorithm structure is initialized by means of kissp_init() and _svm_init() functions, 
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latter of which sets up parameters of the libsvm library. The verdict_init() function is 

called in order to prepare the reconciliation algorithm variables.

During initialization, the libevent library is prepared for event handling. This includes 

setting up execution of the garbage collector each 10 seconds, which is implemented in 

function  named  _gc().  This  function  will  iterate  through  all  entries  in  spi.eps and 

spi.flows, and remove old entries, i.e. those, for which there were no new packets for 

more  than  5  minutes.  The  garbage  collector  is  also  run  if  either  the 

classifierModelUpdated or the gcSuggestion event is announced.

New traffic sources can be added using a function named spi_add(). Depending on 

the type of the source,  it  calls  either  source_file_init() for off-line traffic files or 

source_sniff_init() for  network  interfaces.  As the result,  functions  of  the  libpcap 

library  are  called, respectively  either  pcap_open_offline(),  or  pcap_open_live(). 

This operation opens a new file descriptor, which is monitored for new data available to be 

read, using the libevent library. Finally, the source is appended to the list of system traffic 

sources, located in spi.sources (see 3.3.2.1).

3.3.3.2 Route of a packet

Figure 3.3 presents the route of a packet in the system.
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37

Fig. 3.3: Flow of an IP packet. Route from entering the system till the final classification.
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First, when a packet arrives on the traffic source monitored by  libevent, an event is 

generated.  It  is  handled  in _pcap_read(),  which  calls  a  libpcap function  named 

pcap_dispatch() in order to fetch the packet. This function can read many packets at 

once, calling _pcap_callback() for each of them.

If the packet is received from an off-line source – i.e. a traffic file – then a special  

check is made if the virtual time in file is more than 10 seconds since last execution of the 

garbage collector. In such case, an event of gcSuggestion is generated.

Then the packet is parsed, and the values inside IP and TP headers are extracted. In 

case  the  packet  belongs  to  a  TCP  stream,  flow_tcp_flags() and  flow_count() 

functions are called for TCP flow tracking. Then, if the packet is long enough, its data are 

stored in the endpoint table. They are passed to  _ep_new_pkt() twice – for the source 

endpoint and for the destination endpoint.

In _ep_new_pkt(), packet data are copied to a new instance of struct spi_pkt and 

appended to the list of endpoint packets. If there are at least 80 packets on the list, a new 

event of endpointPacketsReady is announced, along with a pointer to the endpoint that 

generated the event.

This event is handled by _ep_ready() in the kissp.c file. In a loop, C=80 packets 

are  consumed  by  the  feature  extractor  implemented  in  _signature_compute_eat(), 

which  produces  a  window signature.  It  is  passed  to  _svm_predict() which  invokes 

svm_predict_probability() function of the  libsvm library and announces the result 

with  an event  of  endpointClassification,  with relevant  data  put  in  an instance  of 

struct spi_classresult.

Finally, the reconciliation algorithm is run, whose task is to join many classifications 

of  the  same  endpoint  into  a  single  result.  The  _verdict_new_classification() 

function  handles  the  endpointClassification event,  calling  implementation  of  the 

appropriate method. If the final result is different from the current endpoint classification, a 

new  event  of  endpointVerdictChanged is  announced,  along  with  a  pointer  to  the 

endpoint that caused the event.
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3.3.3.3 System training

Figure 3.4 presents the process of training the system using IP packets.

If a traffic source has a label, the application identity of all its IP packets is known. 

Hence, when a window signature is extracted, it may be used for training. The buffer of 

training  signatures  is  supplemented  through  the  spi_train() function.  When  a  new 

signature is appended to the list, a delayed event of  traindataUpdated is announced. 

There  are  3 seconds for  further  updates  from the moment  in  which the  first  signature 

extends the list.

Once the event is delivered,  it  is handled by  _svm_train(),  which creates a new 

SVM model by calling svm_train() from the libsvm library.
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3.3.4. Application Programming Interface

Functionality of  libspi can be accessed from external programs using its Application 

Programming Interface,  which is  stored in  spi.h file.  Listing  3.12 presents the set  of 

essential API functions. Refer to 7.2 for a detailed description of the API.

1. struct spi *spi_init(struct spi_options *so);

2. void spi_free(struct spi *spi);

3. int spi_add(struct spi *spi, spi_source_t type,

4.     spi_label_t label, bool test, const char *args);

5. int spi_loop(struct spi *spi);

6. void spi_stop(struct spi *spi);

7. void spi_announce(struct spi *spi, const char *evname,

8.     uint32_t delay_ms, void *arg, bool argfree);

9. void spi_subscribe(struct spi *spi, const char *evname,

10.     spi_event_cb_t *cb, bool aggregate);

11. void spi_train(struct spi *spi, struct spi_signature *sign);

12. void spi_trainqueue(struct spi *spi, struct spi_signature *sign);

13. void spi_trainqueue_commit(struct spi *spi);

14. double spi_stats_fp(struct spi *spi, spi_label_t label);

15. double spi_stats_fn(struct spi *spi, spi_label_t label);

 Listing 3.12: libspi API. Set of essential functions.

3.4.Front-end: the spid program

As a part of the thesis, a simple front-end program using libspi was written. Its task is 

to make the libspi functionality accessible from the command-line.

3.4.1. File list

Source code consists of the following files:

• spid.h: holds data structures and forward function declarations of spid.c

• spid.c: the main program; communication with the libspi library and display of 

classification results

• samplefile.h: forward declarations of samplefile.c functions

• samplefile.c: implementation  of  functions  for reading and writing files  with 

signatures
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3.4.2. Data structures

Program data structures are defined in  spid.h file. Synopsis of the two structures – 

struct spid and struct source – given below on Listing 3.13.

1. struct source {

2.     char *proto;

3.     char *cmd;

4.     bool test;

5. };

6. struct spid {

7.     struct mmatic *mm;

8.     struct spi *spi;

9.     struct spi_options spi_opts;

10.     thash *proto2label;

11.     thash *label2proto;

12.     tlist *learn;

13.     tlist *detect;

14.     struct options;

15. };

Listing 3.13: struct spid and struct source. Two data structures of the spid program.

struct source represents a traffic source, and the task of struct spid is similar to 

struct spi – to be the main instance data structure. See 7.3 for details.

3.4.3. Control flow and communication with libspi

Program control flow is presented on Fig. 3.5.
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Execution starts in the main() function, which after data structure initialization calls 

parse_config().  Command-line  arguments  and  any  configuration  files  referenced  in 

program invocation are parsed, and the control is returned to main().

In  case  a  signature  database  file  is  given,  a  parser  is  called,  implemented  by 

sf_read() in  samplefile.c.  This  function  reads  the  database  line-by-line  and calls 

spi_trainqueue() for each signature properly read.

A set of libspi functions is used in order to set up the classification system properply 

before it is started. Subscriptions to  libspi events are made, and finally the main loop is 

started by means of spi_loop().
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3.4.Front-end: the spid program

Each time the system issues a new endpoint classification, the _verdict_changed() 

function is called. The result is displayed on the standard output, in a form readable by a 

human operator.

When the system is stopped – e.g. due to the end of packets in all traffic sources – 

program control  is  returned to  main(). If  the system learned new signatures  from IP 

packets, the signature database file is rewritten by sf_write(), which stores all signatures 

from spi.traindata (see 3.3.2.1) on disk.

Finally, system performance statistics are printed to the standard output – see  Błąd:

Nie znaleziono źródła odwołania.

3.4.4. User interface

The  spid program is  invoked  from the  command-line,  according  to  the  following 

syntax:

1. spid [OPTIONS] [<traffic sources...>]

Where OPTIONS is a list of options, from the following set:

• --learn=<lspec>: train the system according to <lspec> (see 7.4.1)

• --learndb=<file>: train the system according to given index file (see 7.4.2)

• --signdb=<file>: use given signature database file (see 7.4.3)

• --test=<lspec>: test the system according to <lspec>

• --testdb=<file>: test the system according to given index file

• --kiss-std: disable KISS signature extensions (see 2.1.3.2)

• --verdict-threshold=<t>: ignore classifications with probability below <t>% 

(see 2.1.3.3)

• --verdict-simple: use  the  “Simple”  method  as  decision  reconciliation 

algorithm (EWMA is used by default)

• --verdict-best: use the “Best” method
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• --verdict-ewma-len=<n>: set the number of samples for “EWMA” method

• --stats: print system performance metrics when program finishes

• --print-probs: include probability information in classification output

• --debug=<n>: set  debugging  level  to  <n>;  this  enables  output  of  internal 

diagnostic messages

• --help: show short usage manual

After  OPTIONS, there is a space-separated list of traffic sources for detection. Each 

entry must conform to the command-line source specification format (see 7.4.1).

Refer to 7.4.4 and 7.4.5 for documentation of the output format.
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4. EVALUATION

This chapter describes system performance evaluation using metrics defined in  2.3. 

Four practical experiments are made and their outcomes are presented.

Although the system is capable of working in real-time, i.e. capturing IP traffic on 

network interfaces,  all  performance evaluation tests  were made in off-line mode, using 

trace  files.  Such  approach  gives  meaningful  results  for  all  kinds  of  traffic  sources. 

Moreover, an off-line evaluation test-bed is easier to develop and supervise.

Section 4.1 gives description of datasets used for experiments, i.e. traces of IP traffic. 

Section 4.2 defines the tests and gives their results, with discussion in the last Section 4.3.
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4.1.Datasets

For evaluation of the system performance, three datasets were used:

• Trace1: personal dataset, collected by thesis author

• Trace2: Skype UDP traces, collected in a test-bed environment

• Trace3: IP-TV traces, collected in a real network

Trace1 is result of a constant packet capture on a typical desktop computer for 30 days 

– July till August 2011. Dataset consists of 144 files, about 100 thousand IP packets each, 

of total size 1GB.

Trace2 and Trace3 were obtained from the Tstat project [Tstat], held by the authors of 

[Fin09] and  [Fin10]. Both datasets were collected and organized with the support of the 

Robust  and  Efficient  traffic  Classification  in  IP  nEtworks [RECIPE] and  MIsure 

sperimentali e MOdelli di traffico dati multiServizio A pacchetto [MIMOSA] projects.

Trace2 was created by merging the first 9 files available for download from the Tstat 

Skype Testbed Traces [TstatSkype], obtaining a file of 148MB.

Trace3 was created by extracting the first 200 000 packets from the first file available 

for download from the Tstat  Multicast  IP-TV Traces  [TstatIPTV], resulting in a file of 

14MB. IP packets contained in this dataset were collected in a real network of an Italian 

company FastWeb, located in Torino. Captured traffic are multicast IP-TV transmissions 

encoded  with  MPEG-2  algorithms,  encrypted  and  encapsulated  in  a  proprietary  UDP 

protocol.

For all packets in Trace2 and Trace3 the application identities are known. For Trace1, 

a simple packet classification using port matching (see  1.3.1) was adopted. As a result, 

packets belonging to the following applications were extracted:

• dns: BPF ([BPF]) filter of udp and port 53

• openvpn: udp and port 1194

• bittorrent: tcp and port 51413

• http: tcp and port 80
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• https: tcp and port 443

Finally, traces of 7 different TCP and UDP applications were obtained from Trace1, 

Trace2 and  Trace3,  giving a total  of almost 9 million packets and almost 30 thousand 

KISS signatures. Table 4.1 summarizes the testing data sets.

It  is  important  to  note  that  the signatures  are  not  uniformly distributed  across  the 

endpoints, i.e. only some endpoints are capable of generating a signature, due to the C and 

P limits (recall 2.1.1.). However, the number of packets can provide a hint on the expected 

number of signatures.

4.2.Results

4.2.1. Test 1: performance vs. training set size

The goal of the first test  was to observe the impact  of training set  size on system 

performance, similarly to [Fin09] sect. V-E.

First, 4 applications of DNS, Skype, IPTV and HTTP were chosen. For each of them, 

its trace file was divided into two halves (in terms of packets ordered by their timestamps) 

– A and B. The B part was further fed into the system for training, obtaining a signature 

database file of several lines.
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Table 4.1 Summary of testing data sets. TCP applications need more packets per signature.

Source Application Size (MB) Endpoints Signatures
Trace1 dns UDP 8 82 40724 1028
Trace1 openvpn UDP 6 50 9 1239
Trace2 skype UDP 148 729 15 18215
Trace3 iptv UDP 14 200 142 4921
Trace1 bittorrent TCP 114 1151 4866 134
Trace1 http TCP 595 6153 138923 2586
Trace1 https TCP 39 404 9910 214

TOTAL 924 8769 194589 28337

Transport 
protocol

Packets 
(thousands)
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For each application, a subset of its signature database was created, by extracting the 

first N signatures. This was repeated for N = 5, 10, 25, 50, 100, 250 and 500. Signature 

databases of all protocols with the same value of N were merged.

Finally, for increasing values of N, the system was trained using merged signature 

databases. In each step, all A parts were fed into the system for classification, in test mode 

(the --testdb option of spid, see 3.4.4).

Performance metrics  for  each  value  of  N were  collected.  Results  are  presented  in 

Table 4.2 and on Fig. 4.1. The last two columns of the table hold percentages of valid and 

invalid decisions.
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Table 4.2: Test 1 results. Dependence of classification performance on the number of training signatures.

HTTP IPTV Skype DNS

number %TP %FP %TP %FP %TP %FP %TP %FP %TP %FP
5 87 0 0 0 0 0 0 0 22 0 258 182
10 100 0 1 0 100 0 100 0 75 0 300 140
25 100 8 1 0 100 0 100 0 75 2 302 138
50 100 9 1 0 100 0 100 0 75 2 302 138
100 100 10 86 0 100 0 100 0 97 3 420 20
250 100 7 86 0 100 0 100 0 97 2 420 20
500 100 0 100 0 100 0 100 0 100 0 440 0

Signatures Average Valid Invalid

decisions decisions
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4.2.2. Test 2: overall system performance

In Test 2, the system was evaluated in an overall performance test, and compared with 

the standard KISS algorithm, i.e. without the modifications introduced in the thesis.

First, the whole testing data set was divided into two subsets: one for training and one 

for testing. Taking into account the results of Test 1, the division was made in such way, 

that at least 500 signatures for each application were present in the training subset. In case 

of BitTorrent and HTTPS this was not possible, hence these trace files were divided into 

two halves. Table 4.3 presents the obtained input traffic traces for Test 2. 
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Fig.  4.1:  True Positive Percentage as function of training signatures number. Each protocol  
has its own minimal number of training signatures for good performance results.

Table 4.3: Input data set for Test 2. Note reduced training sets for BitTorrent and HTTPS.

BitTorrent 370000 62 2756 781088 74 2146

DNS 40000 500 19754 42407 529 20969

HTTP 2500000 502 26735 3653539 2086 112191

HTTPS 200000 111 4894 204626 98 5048

20000 495 9 29747 742 2

Skype 20000 497 3 709275 17713 14

Training Testing
Packets Signatures Endpoints Packets Signatures Endpoints

OpenVPN
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In order to evaluate the impact of the main algorithm modifications (see  2.1.3.), the 

test was repeated 3 times, with different spid options (see 3.4.4.):

1. The thesis version: all default options.

2. The original KISS with EWMA reconciliation algorithm: --kiss-std

3. The original  KISS algorithm:  --kiss-std –-verdict-simple --verdict-

threshold=0

Table 4.4 presents obtained results.

4.2.3. Test 3: unknown protocol detection

In Test 3, the previous test was repeated, but this time the training traces of HTTP and 

DNS were removed, i.e. the system was not trained to detect these protocols. In the testing 

traces, they were marked as “unknown” and the whole evaluation procedure was run once 

again. Results presented in Table 4.5.
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Table 4.4: Test 2 results. Algorithm modifications affect system performance.

KISS+ KISS
%TP %FP %TP %FP %TP %FP
100.00 0.00 100.00 0.00 100.00 0.00

Skype 88.89 0.00 88.89 0.00 88.89 0.00

DNS 100.00 0.00 100.00 0.00 100.00 0.00

IP-TV 100.00 0.00 94.29 0.00 95.71 0.23

BitTorrent 100.00 0.00 100.00 0.40 50.00 0.90

HTTP 99.75 0.00 98.77 0.55 99.39 1.10

HTTPS 96.43 0.00 96.43 0.00 96.43 0.00

AVERAGE 97.87 0.00 96.91 0.14 90.06 0.32

KISS with EWMA

OpenVPN

Table 4.5: Test 3 results. Presence of applications unknown to the system affects the results.

KISS+ KISS
%TP %FP %TP %FP %TP %FP

100.00 0.00 100.00 0.00 100.00 0.00

Skype 88.89 0.00 88.89 0.00 88.89 0.00

IP-TV 100.00 9.04 94.29 91.14 95.71 94.99

BitTorrent 100.00 0.20 0.00 0.40 50.00 1.10

HTTPS 96.43 0.00 96.43 0.00 96.43 0.00

AVERAGE 97.06 1.85 75.92 18.31 86.21 19.22

KISS with EWMA

OpenVPN
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4.2.4. Test 4: processing speed

The goal of Test 4 was to experimentally evaluate processing speed of the system, 

giving insight into the following questions:

1. What is the processing speed of the system, i.e. the time needed for classifying 

given number of IP packets?

2. What does the speed depend on?

All tests were run on a low-power laptop computer, with an Intel Pentium M 1.80GHz 

CPU and 1 GB of RAM, under Ubuntu 11.04 Linux distribution. An assumption is made, 

that the operating memory is big enough so that all system variables reside in RAM, i.e. 

there is no swapping.

First,  the experiment  from Test  1  was repeated,  but  for  each  value  of  N the  spid 

program  was run 10 times in a row. For each N, the total  elapsed wall-clock time was 

measured using a UNIX tool of  time(1).  Table 4.6 presents obtained results. Its third 

column “Average” holds the average time needed for single execution of spid.

Then,  another  experiment  was  performed.  The  system  was  trained  using  the 

signature database from Test 1 for N=500. All packet traces introduced in section 4.1 were 

merged. From this merged file, several smaller files were generated, by extracting the first 

K = 100000, 200000, ..., 1000000 of its packets.
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Table  4.6:  Program  run  time  versus  number  of  training  
signatures.  First column shows number of training  
signatures for each of 4 applications.

Total run time
number

5 44 4.40
10 44 4.40
25 45 4.50
50 44 4.40
100 44 4.40
250 45 4.50
500 44 4.40

4.43

Signatures Average
seconds seconds

Average
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For increasing values of K, the  spid program was run 10 times in a row. Again, the 

time(1) tool  was  used  to  measure  the  total  elapsed  wall  clock  time  needed  for 

classification.

Table 4.7 present obtained results. Fig. 4.2 graphically shows the dependence of time 

needed for single execution on K.

Table 4.7: Program run time versus number of packets.
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Fig. 4.2: Average run time versus number of IP packets.

Packets File size Total run time Average Average pps Average bps
number MB seconds seconds pps x 1000 Mbps

100000 10 10 1.00 100.00 80.00
200000 21 18 1.80 111.11 93.33
300000 51 29 2.90 103.45 140.69
400000 79 41 4.10 97.56 154.15
500000 104 50 5.00 100.00 166.40
600000 127 60 6.00 100.00 169.33
700000 143 72 7.20 97.22 158.89
800000 150 86 8.60 93.02 139.53
900000 157 95 9.50 94.74 132.21
1000000 167 101 10.10 99.01 132.28

Average 99.61 136.68
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4.3.Discussion

4.3.1. Test 1

The system apparently needs a few hundred signatures in order to learn a particular 

application identity. The minimal number of signatures varies and depends on the protocol. 

For most applications, even 10 signatures were enough. However, results for 25 and more 

signatures revealed that the system needs at least 500 signatures for stable operation and 

consistent results, i.e. %TP close to 100 while keeping %FP close to 0.

Comparing to sect. V-E of [Fin09], the %FP metric is quite low, most probably due to 

modifications made to the KISS algorithm (2.1.3.). However, direct result comparison is 

impossible because the system classifies endpoints instead of flows (recall 2.1.3.1).

4.3.2. Test 2

The test of overall performance gave a very good result of average %TP=97.87 and 

%FP=0.00. The %TPSkype=88.89  could probably be improved by using greater number of 

training samples.

For  experiments  without  the  thesis  modifications  made  to  the  main  algorithm, 

relatively worse results were obtained. Indeed, signature extensions (recall 2.1.3.2) let for 

about 1% of improvement, whereas the EWMA classification reconciliation algorithm (see 

2.1.3.3)  combined  with  the  unknown  protocol  detection  (see  2.1.3.4)  brought  a  6% 

improvement to %TP.

4.3.3. Test 3

In Test 3,  the system was able  to properly detect  unknown protocols,  with only a 

0.81% worse %TP metric and a 1.85% increase in %FP.

Again,  compared to the original KISS algorithm, the thesis system produced much 

better results. In case of experiment without signature extensions, results of %TP=75.92 

and %FP=18.31 were obtained.
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However,  such  comparison is  unfair,  as  the  original  algorithm relies  on  relatively 

good-quality “Background” traffic for the training phase.

4.3.4. Test 4

On a low powered machine the system was able to handle 136.68Mbps and almost 100 

000 packets per second, on average.  This roughly means that one packet is handled in 

10μs.

Processing time seems to linearly depend on the number of packets for classification. 

It does not depend on the number of training signatures, which is a great advantage of the 

libsvm library and SVM in general.
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5. CONCLUSIONS

1. In  the  thesis  a  practical  system  for  statistical  classification  of  IP  traffic  was 

implemented. The system fulfils the thesis goals set in section 1.2. In particular, it 

works in real-time, under control of the Linux operating system.

2. Resultant  software  is  portable,  fast  and  embeddable.  It  is  implemented  in  C 

language as a single-threaded software library. It has a modular architecture based 

on an event loop.

3. The system can simultaneously:  handle off-line and live traffic  sources, classify 

new packets, learn new applications, and evaluate system performance.

4. Application  of  the  modified  KISS  algorithm  allowed  to  achieve  classification 

performance results of %TP=97.87 and %FP=0, on average. This is consistent with 

the results claimed by the algorithm authors (see 2.1).

5. Modifications  of  the  KISS  algorithm  proposed  in  the  thesis  resulted  in  better 

classification performance.

6. Application of SVM class membership probability resulted in an alternative method 

for  detection  of  unknown  protocols.  This  is  an  improvement  compared  to  the 

original KISS algorithm, in which a special “Background” traffic class is required 

in such case.

7. SVM model generation process was optimized using a queue of training vectors.

8. A several  hundred training signatures of a particular  application are required in 

order to achieve good results. For UDP, 40-80 packets are required on average to 

form a signature. For TCP, 2000-9000 packets.

9. The  system was  able  to  properly  recognize  applications  which  use  encryption, 

particularly Skype, OpenVPN, HTTPS, and a proprietary IP-TV application.  No 

protocol reverse-engineering was required in order to train the system to do so.

10. On  a  low-powered  machine,  the  system  achieved  average  processing  speed  of 

almost 100 000 packets per second and over 130Mbps.
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6. SUMMARY

The thesis presented a practical system for statistical classification of IP traffic. Two 

novel algorithms were applied, extended and implemented. The system was written in C 

language,  in  a  portable  and  flexible  manner  as  a  software  library.  Evaluation  of  the 

resultant  software  performance  yielded  very  good  results,  in  terms  of  quality  and 

processing speed,  achieving %TP>97 and %FP=0 on average.

Results introduced by the thesis answer positively to the question on applicability of 

statistical traffic classification in practice. The system works in real-time, under the Linux 

operating system, which is  very popular amongst small  and mid-sized Internet  Service 

Providers. It can be trained to recognize new kinds of traffic in a timely manner.

However, further work is needed in order to overcome some limitations. In particular, 

the  algorithm implemented  in  the  thesis  is  able  to  classify  only  about  5% of  Internet 

endpoints, yet carrying more than 98% of bytes. Probably, a solution covering the whole 

problem area would need to combine several methods.

Moreover, another problem that the research community has to solve is a common set 

of traffic samples. They are crucial for evaluation of classification performance. Currently, 

a  usual  situation  is  that  each  research  group  introduces  its  own input  data  set.  Thus, 

comparison of their results – and proposed classification methods – is often difficult.

Traffic classification has numerous applications.  It can be used as the fundamental 

element  of  traffic  shaping  systems,  firewalls,  intrusion  detection  systems,  network 

maintenance tools, and much more. For instance, the thesis software could be used in a 

highly congested network in order to prioritize Skype traffic and improve voice quality.
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7. APPENDIX: IMPLEMENTATION 

DETAILS

7.1. libspi data structures

7.1.1. Main structure: struct spi

Structure members:

• mm: used for memory management by the libasn library

• options: stores run-time program options

• running: holds  true if the program is currently inside an iteration of the main 

loop, false otherwise

• quitting: used for breaking the main loop; if the value is true, then libspi will 

exit on its next iteration

• eb: a libevent variable holding its main instance data

• evgc: a  libevent variable  holding the event  which schedules the  libspi garbage 

collector execution

• subscribers: subscribers  of  internal  events;  a  hash  table  of  struct 

spi_subscribers (see 3.3.2.2)

• sources: traffic sources (see  2.2.3); a linked list of  struct spi_source (see 

3.3.2.3)

• eps: the endpoint table (see 2.2.4); a hash table of struct spi_ep (see 3.3.2.4)

• flows: TCP flow table used for the P limit (see  2.1.1); a hash table of  struct 

spi_flow; similar to spi.eps

• traindata: training  signatures  (see  2.2.2);  a  hash  table  of  struct 

spi_signature (see 3.3.2.5)

57



APPENDIX: IMPLEMENTATION DETAILS

• trainqueue: signature database - queue of training signatures (see 2.2.1); a hash 

table of  struct spi_signatures; it constitutes an intermediate buffer between 

signatures in the database and spi.trainqueue

• stats: statistical  data used for calculation of system performance metrics;  see 

3.3.2.7

• cdata: a generic pointer to main algorithm data, in this case struct kissp; see 

3.3.2.8

• vdata: a generic pointer to implementation of the complex decision process, in 

this case struct verdict; see 3.3.2.9

7.1.2. Internal  events:  struct  spi_subscribers, 

spi_event_cb_t and struct spi_event

Members of struct spi_subscribers:

• hl:  list  of  handlers  to  call  when  the  event  is  announced;  a  linked  list  of 

spi_event_cb_t

• ahl: a list of handlers to call  after  all handlers from  hl finish; a linked list of 

spi_event_cb_t

• aggstatus: an  enumeration  for  tracking  the  current  state  of  the  event  in  the 

system; used for aggregation of multiple event announcements into one round of 

handler call; possible values:

◦ SPI_AGG_DISABLED: state tracking disabled

◦ SPI_AGG_READY: no event announcements in the system

◦ SPI_AGG_PENDING: the  event  was  announced  and  it  is  pending  for  being 

handled

Arguments of  spi_event_cb_t:

• spi: reference on the global instance of struct spi

• evname: name of the event that caused the handler to be called

• arg: optional generic pointer passed during event announcement

A handler  returns  false if  it  requests  to  be  unsubscribed  from the  list  of  event 

handlers. Otherwise, it returns true.
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Members of struct spi_event:

• spi: reference on the global instance of struct spi

• evname: name of the event that was announced

• ss: reference on the relevant entry in spi.subscribers

• arg: optional  announcement  argument;  a  generic  pointer  passed  to 

spi_event_cb_t

• argfree: decides if the memory pointed by  arg should be released after event 

handling is finished; value of true enables this functionality

7.1.3. IP traffic: struct spi_source and struct spi_pkt

Members of struct spi_source:

• spi: reference on the global instance of struct spi

• type: type of the source, either:

◦ SPI_SOURCE_FILE: offline source – a packet trace file

◦ SPI_SOURCE_SNIFF: online source – a network interface traffic sniffer

• label: optional application label; if the value is greater than 0, the source can be 

used for system training or performance evaluation (recall 2.2.3)

• testing: if true, this source is in testing mode and will be used for performance 

evaluation instead of training

• fd: a  UNIX  file  descriptor  of  the  underlying  packet  source,  extracted  from 

libpcap; the file descriptor is monitored using  libevent for new data available for 

reading, thus this is the most important, original source of activity in the system

• evread: a  libevent variable  representing  the  event  of  new  data  available  for 

reading from fd

• counter: number of IP packets read from the source so far

• signatures: number of signatures extracted from the source so far

• learned: number of source signatures used for training so far

• eps: number of endpoints identified in the source so far

• closed: set to true when source is considered to be closed, e.g. when the end of 

packet trace file is encountered
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• as: a union of two structures, used in interchangeable way, depending on the value 

of the type member

• as.file: structure used if type is SPI_SOURCE_FILE

◦ pcap: an instance variable of the libpcap library

◦ path: file system path to packet trace file

◦ time: time-stamp of the most recently read IP packet; used as virtual current 

moment of time (i.e. “now”), local to the particular traffic source

◦ gctime: value of the time member during last execution of the endpoint table 

garbage collector;  used in order  to  schedule the garbage collector  using the 

virtual time (e.g. once per minute), even if in the reality the file is parsed much 

faster (e.g. a virtual week of traffic each second)

• as.sniff: structure used if type is SPI_SOURCE_SNIFF

◦ pcap: an instance variable of the libpcap library

◦ ifname: name of the network interface to capture the traffic on

Members of struct spi_pkt:

• payload: stores first N bytes of the packet payload (recall 2.1.1)

• ts: packet time-stamp; the value has a meaning relative to the traffic source (see 

spi_source.as.file.time)

• size: total packet size, in bytes

7.1.4. Endpoints: struct spi_ep

Members of struct spi_ep:

• mm: a  memory  management  object  of  libasn representing  the  whole  memory 

occupied by the endpoint data, including the parent instance of mm

• source: traffic source that caused creation of this endpoint (see 3.3.2.3)

• epa: endpoint address

• last: time-stamp of the last packet registered in this endpoint

• pkts: accumulated packets; a linked list of struct spi_pkt

• gclock: if true, endpoint must not be removed by the garbage collector

• predictions: number of SVM predictions so far
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• verdict: stores current classification verdict (see 3.3.2.5 for spi_label_t)

• verdict_prob: stores probability of verdict; allowed range 0.0 – 1.0

• verdict_count: number of changes of verdict values

• vdata: a generic pointer to endpoint-specific data of the complex decision process 

(see 3.3.2.9)

7.1.5. Signatures: struct spi_signature

Members of struct spi_signature:

• label:  optional application identity – if not 0, the signature can be utilized for 

system training or testing

• c: feature vector; an array of struct spi_coordinate, compatible with struct 

svm_node of libsvm (in terms of members and their placement)

◦ index: coordinate number (first coordinate has index of value 1, not 0)

◦ value: coordinate value

7.1.6. Classification results: struct spi_classresult

Members of struct spi_classresult:

• ep: endpoint that generated the input feature vector

• result: SVM  classification  result;  the  return  value  from  the 

svm_predict_probability() function of libsvm

• cprob_lib: SVM  classification  probability  array;  the  third  argument  to  the 

svm_predict_probability() function

• cprob: SVM classification probability after translation;  libsvm can mix the array 

indices, so additional translation from the concept of libsvm class to libspi label is 

required

7.1.7. Performance evaluation: struct spi_stats

Members of struct spi_stats:

• learned_pkt: number of signatures that were used for system training, coming 

from traffic sources
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• learned_tq: number of signatures that  were used for system training,  coming 

from the signature database

• test_all: number of classifications, for which testing information is available

• test_is: like test_all, but for each label separately

• test_ok: number of True classifications

• test_FN: number of False Negatives for each label

• test_FP: number of False Positives for each label

7.1.8. KISS algorithm: struct kissp

Members of struct kissp:

• feature_num: number of coordinates in feature vectors – either 24 ( 2×N , see 

2.1.1) or 28 (extended signature, see 2.1.3.2)

• options.pktstats: if true, enable extended signatures

• svm: gathers data required for handling of the libsvm library

◦ model: the SVM model; output of the svm_train() function

◦ params: libsvm parameters

◦ labels: translation  from  libsvm class  number  to  libspi label;  an  array,  in 

which cell i represents class number i, and its value is the label

◦ nr_class: number  of  SVM  classes,  output  of  the  svm_get_nr_class() 

function

7.1.9. Complex  decision  process:  struct verdict and  struct 

ewma_verdict

Members of struct ewma_verdict:

• cprob: endpoint  classification  probabilities;  each  array  cell  holds  a  separately 

calculated EWMA

Members of struct verdict:

• type: chosen method for the final decision

◦ SPI_VERDICT_SIMPLE: use method “Simple”

◦ SPI_VERDICT_EWMA: use method “EWMA” (default)
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◦ SPI_VERDICT_BEST: use method “Best”

• ewma.N: number of samples for EWMA, default 5

7.2. libspi Application Programming Interface

• spi_init():  initialize  libspi,  see  3.3.3.1;  this  function  must  be called  before 

other functions can be used

◦ returns an initialized instance of struct spi, which must be passed as the first 

argument to all other API functions

◦ so arguments: run-time system options; if NULL, default values will be used

• spi_free():  does  the  opposite  to  spi_init(),  deallocating  all  memory 

occupied by the system

• spi_add(): add a traffic source, see 3.3.3.1

◦ returns 0 on success or a different value in case of an error

◦ arguments:

▪ type: source type

▪ label: source label, may be 0 if unknown

▪ test: if true and label is not 0, source will be used for system testing

▪ args: additional arguments, specific to source type:

• for traffic files, string of format “<path> <filter>”, where:

◦ <path>: path to the traffic file

◦ <filter>: optional  libpcap filter  in  BPF  format  [BPF];  if  not 

specified, “tcp or udp” is used

• for network interfaces, string of format “<name> <filter>”, where:

◦ <name>: name of the network interface to capture the traffic on

◦ <filter>: same as for traffic sources

• spi_loop(): make one iteration of the main program loop

◦ returns  0  on  success,  -1  on  temporary  error,  1  on  permanent  error  or  2  if 

stopping the whole system was requested

• spi_stop(): make a request to stop the main loop

• spi_announce(): announce an internal event
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◦ arguments:

▪ evname: event name

▪ delay_ms: event delay, in milliseconds; if no delay is desired, set to 0

▪ arg: optional event argument

▪ argfree: if  true, then the memory pointed by  arg will be deallocated 

after event handling

• spi_subscribe(): subscribe to an internal event

◦ arguments:

▪ evname: event name

▪ cb: event callback

▪ aggregate: if true, aggregate multiple announcements of the same event 

into one, until the first announcement is handled

• spi_train(): add a training signature (see 3.3.3.3)

◦ sign argument: the signature to add; it must have the label member set

• spi_trainqueue(): add a signature to the queue of training signatures (signature 

database, see 2.2.1.); does not announce the traindataUpdated event

◦ takes same arguments as in spi_train()

• spi_trainqueue_commit():  move  all  signatures  from  the  training  queue  to 

training signatures, announcing the traindataUpdated event

• spi_stats_fp(): get the %FP metric for given application identity

◦ returns either a real number in range 0.0-100.0 or -1 if the metric is unavailable

◦ label argument: application identity label

• spi_stats_fn(): like spi_stats_fp(), but returns the %FN metric

7.3. spid data structures

Members of struct source:

• proto: optional name of application identity; if NULL, the traffic source supplies 

packets of unknown identity

• cmd: traffic source specification, either:

◦ a file path – the source will be used as SPI_SOURCE_FILE

64



7.3.spid data structures

◦ a network interface name – the source will be used as SPI_SOURCE_SNIFF

• test: if true and proto is not NULL, the source will be used for system testing

Members of struct spid:

• mm: a memory management variable used by libasn

• spi: libspi instance data

• spi_opts: libspi options to pass during its initialization

• proto2label: used for translation from application identity name (e.g. “Skype”) 

into a numeric label (e.g. 7); a hashing table

• label2proto: as proto2label, but in the opposite direction

• learn: list of traffic sources for system training; a linked list of struct source

• detect: like learn, but holds traffic sources for classification and system testing

• options: run-time options of spid

7.4.spid data formats

7.4.1. Command-line source specification format

The command-line format for traffic files is presented in a few examples:

1. ./file.pcap

2. smtp:/home/user/file.pcap tcp and port 25

In the first line, a file path relative to the current working directory of the spid process 

is given. In the second line, an absolute file path is given, with a BPF [BPF] filter attached, 

after a space character. The “smtp:” prefix tells the application identity behind IP packets, 

so the source can be used for system training or testing.

For network interfaces, it is:

1. wlan0

2. dns:eth0 udp and port 53

Both lines give the interface name. Optionally, line can be prefixed with application 

name and a BPF filter can be attached, as in case of traffic files.
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7.4.2. Packet trace index file format

An index file is used for referencing many traffic files at once. It follows a syntax 

similar to the command-line syntax, but the application name prefix is necessary. A few 

exemplary lines given on Listing 7.1.

1. # Exemplary packet trace index file.

2. bittorrent /home/user/dumps/bittorrent1.pcap 

3. bittorrent /home/user/dumps/bittorrent2.pcap 

4. bittorrent-tcp /home/user/dumps/bittorrent-tcp1.pcap 

5. dns /home/user/dumps/dns1.pcap 

6. dns /home/user/dumps/dns3.pcap 

7. http /home/user/dumps/http1.pcap 

8. http /home/user/dumps/http2.pcap 

9. skype /home/user/dumps/skype1.pcap 

Listing 7.1: Exemplary packet trace index file. Comments start with a hash character.

7.4.3. Signature database file format

Signatures (recall  3.3.2.5) are stored in text format, one per line. Each entry begins 

with  application  name,  and  then  coordinate  values,  separated  with  spaces,  follow. 

Exemplary file given on Listing 7.2.

1. bittorrent 0.875 0.875 0.875 0.875 0.871667 0.897333 0.407333 

0.407 0.896667 0.872333 0.871667 0.896667 0.872 0.871667 0.872 0.871667 

0.875 0.875 0.875 0.875 1 0.875 0.875 0.875 0.0986 0.0237397 0.0285972 2 

2. dns 0.0386667 0.0293333 0.0306667 0.02 1 0.466667 1 0.466667 1 1 1 

1 1 1 0.649333 1 1 1 0.692 1 1 1 1 1 0.0561667 0.0297895 0.04048 2 

3. dns 0.0266667 0.0133333 0.02 0.0186667 1 0.466667 1 0.466667 1 1 1 

1 1 1 0.509333 1 1 1 0.658667 1 1 1 1 1 0.0615333 0.0234933 0.0269054 2 

4. skype 0.0116667 0.012 0.0163333 0.0136667 1 0.0773333 0.01 

0.0143333 0.00933333 0.016 0.00633333 0.00833333 0.0196667 0.0173333 

0.01 0.0106667 0.00966667 0.00866667 0.0156667 0.01 0.011 0.012 

0.0166667 0.006 0.141983 0.0267949 0.0105065 2 

5. skype 0.00866667 0.0123333 0.0146667 0.013 1 0.0753333 0.014 

0.00933333 0.0106667 0.0273333 0.00633333 0.007 0.00666667 0.00966667 

0.00833333 0.00866667 0.013 0.0123333 0.00833333 0.0143333 0.00633333 

0.0223333 0.0143333 0.011 0.150242 0.0148 0.0240926 2 

6. openvpn 0.469667 0.922333 0.455667 0.455667 0.455667 0.455667 

0.455667 0.973667 0.455667 0.455667 0.469667 0.455667 0.455667 0.455667 

0.455667 0.973667 0.455667 0.455667 0.453667 0.973667 0.973667 0.973667 

0.973667 0.973667 0.0744583 0.0247179 0.0449351 2 

Listing 7.2: Exemplary signature database file. Each line starts with application name.

66



7.4.spid data formats

7.4.4. Endpoint classification output format

New endpoint verdict generates a new line on the standard program output. Example 

given on Listing 7.3.

1. $ ./spid --signdb=test/signdb test/1.pcap 

2. 1.pcap: UDP 192.168.7.124:19313 is skype 

3. 1.pcap: UDP 149.13.32.247:46822 is skype 

4. 1.pcap: UDP 192.168.7.124:50084 is openvpn 

5. 1.pcap: UDP 91.200.172.23:1198 is openvpn 

6. 1.pcap: TCP 91.197.13.248:80 is http 

7. 1.pcap: TCP 212.91.8.233:80 is http 

8. 1.pcap: TCP 77.79.214.25:80 is http 

9. 1.pcap: TCP 91.197.13.247:80 is http

Listing 7.3: Exemplary spid output. A traffic file ./test/1.pcap is classified.

Each  line  starts  with  source  name,  which  is  either  a  shortened  file  path  or  an 

interface name. This is followed by endpoint address – transport protocol, IP address and 

transport protocol port. Finally, name of the recognized application identity is given.

In case the  --print-probs command-line option is enabled, program output looks 

like on Listing 7.4.

1. $ ./spid --signdb=test/signdb test/1.pcap --print-probs

2. 1.pcap: UDP 192.168.7.124:19313 is skype 90 1 

3. 1.pcap: UDP 149.13.32.247:46822 is skype 100 1 

4. 1.pcap: UDP 192.168.7.124:50084 is openvpn 98 1 

5. 1.pcap: UDP 91.200.172.23:1198 is openvpn 100 1 

6. 1.pcap: TCP 91.197.13.248:80 is http 99 1 

7. 1.pcap: TCP 212.91.8.233:80 is http 98 1 

8. 1.pcap: TCP 77.79.214.25:80 is http 98 1 

9. 1.pcap: TCP 91.197.13.247:80 is http 99 1 

Listing 7.4: Program output with probability information. Format enabled by the –print-probs option.

Comparing to the output from Listing 7.3, the last two numbers are respectively the 

classification probability and the number of verdict changes made so far for this endpoint.
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7.4.5. Performance metrics output format

In case the  --stats command-line option is enabled and adequate testing sources 

were  provided,  the  output  as  on  Listing  7.5 will  be  generated  at  the  end  of  program 

execution.

1. PROTOCOL STATISTICS  : 

2.             dns TP 100% / FP  0% in 9 endpoints 

3.      bittorrent TP 100% / FP  1% in 10 endpoints 

4.           skype TP 100% / FP  0% in 2 endpoints 

5.         openvpn TP 100% / FP  0% in 4 endpoints 

6.         sopcast TP 100% / FP  0% in 80 endpoints 

7.            http TP 100% / FP  0% in 20 endpoints 

8.  bittorrent-tcp TP 50% / FP  0% in 2 endpoints 

9.         AVERAGE TP 93% / FP  0% in total of 127 endpoints 

10. ENDPOINT STATISTICS  : 

11.           valid  126 (99%) 

12.         invalid    1 ( 1%) 

13.           TOTAL  127 

Listing 7.5: Program performance metrics output. Functionality enabled by the --stats option.

In the part entitled “PROTOCOL STATISTICS”, the %TP and %FP metrics defined 

in section 2.3. are given – for each application identity, and as an average. The last part – 

“ENDPOINT STATISTICS” – tells how many valid and invalid classifications the system 

made.
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9. SUMMARY IN POLISH

STATYSTYCZNA KLASYFIKACJA RUCHU IP W CZASIE 
RZECZYWISTYM W SYSTEMIE OPERACYJNYM LINUX

Streszczenie: Praca  prezentuje  system  statystycznej  klasyfikacji  ruchu  IP 
działający  w  praktyce.  Zostały  zastosowane  i  poszerzone  dwa  nowatorskie 
algorytmy  oparte  o  klasyfikację  wektorów cech  przy  użyciu  SVM. System 
zaimplementowano w języku C w formie biblioteki, która umożliwia zarówno 
monitorowanie interfejsów sieciowych w czasie rzeczywistym, jak i pracę w 
trybie off-line,  przez odczyt  plików śladu ruchu. Możliwe jest  równoczesne 
klasyfikowanie, uczenie systemu i ocena jego wydajności. Otrzymano bardzo 
dobre  wyniki  jakościowe  i  szybkości  przetwarzania  pakietów,  osiągając 
średnio %TP>97 i %FP=0.

STATISTICAL,  REAL-TIME  CLASSIFICATION  OF  IP 

TRAFFIC IN LINUX OPERATING SYSTEM

Summary: The thesis introduces a practical system for statistical classification 
of IP traffic. Two novel algorithms are applied and extended. They are based 
on feature vector classification using SVM. A software library written in C 
language is presented. Resultant system can monitor network interfaces in real-
time and read off-line packet trace files. Simultaneous classification, system 
training, and performance evaluation is possible. The system yields very good 
results, in terms of quality and packet processing speed, achieving %TP>97 
and %FP=0 on average.
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