Product (aka local) numerical range and its applications in quantum information theory

> Jarosław Miszczak IITiS PAN, Gliwice, Poland

> > in collaboration with

P. Gawron, Z. Puchała (Gliwice), Ł. Skowronek (Cracow), M-D. Choi (Toronto), K. Życzkowski (Cracow/Warsaw)

Motivation

Standard definitions

Product version of the numerical range

Applications in quantum information Local distinguishability of unitary operators Calculation of minimum output entropy Identification of positive maps

Summary

Motivation

Unitary orbits vs local unitary orbits

Global case Maximize fidelity $F(A, B) = tr|\sqrt{A}\sqrt{B}|$ using unitary operations

 $\max_{U} F(UAU^{\dagger}, B)$

Local case

Maximize fidelity between bipartite states using unitary operations of the form $U = U_A \otimes U_B$

 $\max_{U \in \mathbf{SU}(m) \otimes \mathbf{SU}(n)} F(UAU^{\dagger}, B)$

If one of the states is product and pure (rank 1 projector) we have

$$\max_{U \in \mathbf{SU}(m) \otimes \mathbf{SU}(n)} F(U|\psi\rangle \langle \psi|U^{\dagger}, B) = \max_{|\psi\rangle, |\phi\rangle} \langle \psi \otimes \phi|B|\psi \otimes \phi\rangle.$$

This answers the question about the best approximation of B using bipartite pure states. But...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If one of the states is product and pure (rank 1 projector) we have

$$\max_{U \in \mathbf{SU}(m) \otimes \mathbf{SU}(n)} F(U|\psi\rangle \langle \psi|U^{\dagger}, B) = \max_{|\psi\rangle, |\phi\rangle} \langle \psi \otimes \phi|B|\psi \otimes \phi\rangle.$$

This answers the question about the best approximation of B using bipartite pure states. But...

The definition can be extended to any matrix B – not necessarily positive, Hermitian... If one of the states is product and pure (rank 1 projector) we have

$$\max_{U \in \mathbf{SU}(m) \otimes \mathbf{SU}(n)} F(U|\psi\rangle \langle \psi|U^{\dagger}, B) = \max_{|\psi\rangle, |\phi\rangle} \langle \psi \otimes \phi|B|\psi \otimes \phi\rangle.$$

This answers the question about the best approximation of B using bipartite pure states. But...

- The definition can be extended to any matrix B not necessarily positive, Hermitian...
- We can also introduce other decomposition of the underlying Hilbert space...

Some standard definitions

Let A be a matrix acting on complex vector space \mathbb{C}^n . We define *numerical range* (or field of values) of A as

$$\mathbf{\Lambda}(A) = \{ \langle v | A | v \rangle : v \in \mathbb{C}^n, ||v|| = 1 \}.$$

 $\Lambda(A)$ is a convex, compact subset of a complex plane. *Numerical radius* defined as

$$\mathbf{r}(A) = \max\{|z| \in \mathbf{\Lambda}(A)\}$$

is a norm on the space of operators. For normal operators ${\boldsymbol B}$ we have

$$\mathbf{\Lambda}(B) = \operatorname{Co}(\sigma(B)),$$

(this is iff) and for Hermitian operator C we have

$$\boldsymbol{\Lambda}(C) = [\lambda_{\min}(C), \lambda_{\max}(C)].$$

Definition (Product numerical range)

Let $\mathcal{H}_N = \mathcal{H}_K \otimes \mathcal{H}_M$ be a tensor product Hilbert space. We define the *product numerical range* $\mathbf{\Lambda}^{\otimes}(X)$ of X, with respect to this tensor product structure, as

$$\boldsymbol{\Lambda}^{\otimes}(\boldsymbol{X}) = \left\{ \langle \psi_{\boldsymbol{A}} \otimes \psi_{\boldsymbol{B}} | \boldsymbol{X} | \psi_{\boldsymbol{A}} \otimes \psi_{\boldsymbol{B}} \rangle : |\psi_{\boldsymbol{A}} \rangle \in \mathcal{H}_{\boldsymbol{K}}, |\psi_{\boldsymbol{B}} \rangle \in \mathcal{H}_{\boldsymbol{M}} \right\},\$$

where $|\psi_A\rangle \in \mathcal{H}_K$ and $|\psi_B\rangle \in \mathcal{H}_M$ are normalized.

Note

This definition depends on decomposition. In most cases we will stick to bipartite systems, but in multipartite systems everything is even more interesting.

Product numerical range

Basic topological properties

- ∧[⊗](A) is compact it is a continuous image of a connected set
- ∧[⊗](A) is not necessarily convex (an example on the next slide)
- ∧[⊗](A) is not necessarily simply connected (for multipartite systems)

Consider normal matrix with eigenvalues 0, 1 and i

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \otimes \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) + i \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \otimes \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

In this case $\mathbf{\Lambda}^{\otimes}(A) = \{x + yi : 0 \le x, 0 \le y, \sqrt{x} + \sqrt{y} \le 1\}$

Product numerical range

Topological properties for multipartite system

In the case of a tripartite system, product numerical range is not necessarily simply connected.

• For a four-partite system $\Lambda^{\otimes}(A)$ can have genus 2.

Question

How does this behavior scale with the number of subsystems?

Let us consider two matrices A_1 and A_2 defined as $A_1 = \text{diag}(1, i, i, -\mathbf{i}, \mathbf{i}, -i, -i, 1)$ and $A_2 = \text{diag}(1, i, i, \mathbf{i}, -\mathbf{i}, -i, -i, 1)$.

Local numerical range of A_1 and A_2 . Numerical range is bounded by solid lines.

In the 4-partite system $\Lambda^{\otimes}(A)$ can have genus 2 *i.e.* it can be a connected sum of two tori. Let us consider the matrix defined as

diag(2, 1+i, 1+i, 2i, -1+i, -2, -2i, 1-i, -1+i, -2i, -2, 1-i, 2i, -1-i, -1-i, 2).

with eigenvalues $\{-2, -1 - i, -1 + i, -2i, 2i, 1 - i, 1 + i, 2\}$

Basic properties - Hermitian case

But in most cases we need to deal with Hermitian (or positive defined) matrices...

Let A be Hermitian acting on $\mathcal{H}_M \otimes \mathcal{H}_N$.

• $\Lambda^{\otimes}(A) \subset \Lambda(A)$ and is reduced to one point iff $A = \alpha \mathbb{1}$

▶ $\Lambda^{\otimes}(A) = [\lambda_{\min}^{\otimes}, \lambda_{\max}^{\otimes}] - i.e.$ it is a line segment

More precise localization of $\Lambda^{\otimes}(A)$ for $\mathcal{H}_{M} \otimes \mathcal{H}_{K}$. $\lambda_{\max}^{\otimes} \geq \lambda_{K+M-1}$ and $\lambda_{\min}^{\otimes} \leq \lambda_{(K-1)(M-1)+1}$

Example

Probability density of eigenvalues and product values $\lambda_{\min}^{\otimes}, \lambda_{\max}^{\otimes}$ for random two-qubit density matrix, generated according to the Hilbert-Schmidt measure.

2×2 Example

For a family of matrices $X_{t,s}$ with $s, t \ge 0$

$$X_{t,s} = \begin{bmatrix} 2 & 0 & 0 & t \\ 0 & 1 & s & 0 \\ 0 & s & -1 & 0 \\ t & 0 & 0 & -2 \end{bmatrix}$$

we obtained the exact values of λ_{\min}^\otimes and $\lambda_{\max}^\otimes.$ The exact formula for local numerical range reads

$$\mathbf{\Lambda}^{\otimes}(X_{t,s}) = [-a(t+s), a(t+s)],$$

where

$$a(t) = \begin{cases} 2 & \text{for} \quad t \in [0, \sqrt{3}) \\ \frac{\sqrt{t^4 + 10t^2 + 9}}{2t} & \text{for} \quad t \in [\sqrt{3}, \infty) \end{cases}$$

٠

Numerical range and local numerical range for matrices $X_{0,s}$.

S

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exemplary applications

Iocal distinguishability of unitary operators

- minimum output entropy
- identification of positive maps

Local distinguishability of unitary operators

Problem

Distinguish two unitary operators U and V using product states. This is to say: find a product state $|\phi \otimes \psi\rangle$ such that $U|\phi \otimes \psi\rangle$ is orthogonal to $V|\phi \otimes \psi\rangle$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Local distinguishability of unitary operators

Problem

Distinguish two unitary operators U and V using product states.

This is to say: find a product state $|\phi \otimes \psi\rangle$ such that $U|\phi \otimes \psi\rangle$ is orthogonal to $V|\phi \otimes \psi\rangle$

Connection with product range

Operators U (on \mathcal{H}_M) and V (on \mathcal{H}_N) are distinguishable iff $0 \in \mathbf{\Lambda}^{\otimes}(U^{\dagger}V)$. If this is the case we have

$$\langle \phi \otimes \psi | U^{\dagger} V | \phi \otimes \psi \rangle = 0$$

for some $|\psi\rangle \in \mathcal{H}_M$ and $|\phi\rangle \in \mathcal{H}_N$.

Minimum output entropy

Problem

Optimize minimal output entropy of quantum channel.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Minimum output entropy

Problem

Optimize minimal output entropy of quantum channel.

Connection with product range

▶ 1-qubit maps: If \u03c8^{\overline} is the smallest local eigenvalue of D_Φ then

$$\mathcal{S}_{\min}(\Phi) = -\lambda_{\min}^{\otimes} \log \lambda_{\min}^{\otimes} - (1-\lambda_{\min}^{\otimes}) \log(1-\lambda_{\min}^{\otimes})$$

• general case: If $1 \in \mathbf{\Lambda}^{\otimes}(D_{\Phi})$ then $S_{\min}(\Phi) = 0$

Question

Is it possible to obtain non-additivity for 1-qubit channels?

Example

For depolarizing channel we have the following dynamical matrix

$$D_{igoplus} = \left(egin{array}{cccc} rac{p+1}{2} & 0 & 0 & p \ 0 & rac{1-
ho}{2} & 0 & 0 \ 0 & 0 & rac{1-
ho}{2} & 0 \ p & 0 & 0 & rac{p+1}{2} \end{array}
ight),$$

for $p \in [0,1]$. In this case we have $\lambda_{\min}^{\otimes}(D_{\Phi}) = \frac{1}{2}(1-p)$ and thus

$$S_{\min}(\Phi) = -\frac{\log\left(\frac{1}{4} - \frac{p^2}{4}\right) + 2p \tanh^{-1}(p)}{\log(4)}.$$

MOE vs operation entropy

Minimum output entropy for one-qubit depolarizing channel.

(日)、

э.

Positive but not CP maps

Problem

Entanglement can be detected using positive but not completely positive maps.

Peres-Horodecki criterion

Bipartite state ρ is separable iff $(\Phi \otimes \mathbb{1})\rho \geq 0$ for all positive Φ .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Positive but not CP maps

Problem

Entanglement can be detected using positive but not completely positive maps.

Peres-Horodecki criterion

Bipartite state ρ is separable iff $(\Phi \otimes 1)\rho \ge 0$ for all positive Φ .

Connection with product range

Map Φ is positive iff $\mathbf{\Lambda}^{\otimes}(D_{\Phi}) \subset [0,\infty)$.

Summary

- Product numerical range can be used to study various problems in quantum information theory (see also: T. Schulte-Herbrüggen *et al.*, Lin. Multilin. Alg. 56 (2008) 3).
- In some cases we are able to describe ∧[⊗](A) analytically, but usually we have to rely on numerical results.
- Generalization: separable numerical range (Duan *et al.* PRL 100, 020503 (2008)). In general: product states are one one of possible choices...
- Still many open problems, including topological properties (genus for multipartite systems).

Thank you for your attention!

- For physicists arXiv:0905.3646
- For mathematicians arXiv:1008.3482
- Some related functions in Mathematica http://bit.ly/qi-mathematica