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Abstract
We introduce the model of generalized open quantum walks on networks using the Transi-

tion Operation Matrices formalism. We focus our analysis on the mean first passage time

and the average return time in Apollonian networks. These results differ significantly from a

classical walk on these networks. We show a comparison of the classical and quantum

behaviour of walks on these networks.

Introduction
Understanding the information flow in classical and quantum networks is crucial for the com-
prehension of many phenomena in physics, social sciences and biology [1–3]. Real-world net-
works are usually small-world and scale-free. An important example of networks which posses
both of these properties are Apollonian networks.

Random walks provide a useful model for studying the behaviour of agents in complex net-
works [4–10]. In particular in [11] it was shown that for the class of finite connected undirected
networks, walks for which probability of leaving a node is reciprocal of its degree, have a fixed
average return time (ART). Mean first passage time (MFPT) and ART in the case of determin-
istic and random Apollonian networks have been studied by Huang et al. [12].

In this paper we investigate the behaviour of quantum walks of the class of Apollonian net-
works. Using the concept of generalised open quantum walks (GOQW) we introduce the defi-
nition of MFPT in the quantum case. The notion of GOQW allows us the consideration of a
broader class of walks compared to the open quantum walks introduced in [13–20]. The main
limitation in using the open quantum walks is the lack of flexibility in assigning the weights to
the edges.

The motivation for performing the research presented in this paper was to study coin-less
quantum walks on undirected graphs, with weights on edges. We also assume that for each
edge its weight in one direction is not necessary related with the weight in the other direction.
In the usual setting [21] quantum walks are defined by a Hamiltonian derived from the adja-
cency matrix. Due to the hermiticity of the Hamiltonian the intensity of transition from vertex
i to vertex j is related to the intensity of transition from j to i. One way to overcome this limita-
tion is to use the technique introduced by Szegedy [22]. In this paper we propose an alternative
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approach by introducing generalized open quantum walks. Moreover, we apply this formalism
to extend the analysis performed in [11], where the authors studied the relation between the
degree of the vertex and mean first passage time of a Markov process.

The paper is organized as follows. In the next section we introduce basic concepts concern-
ing the presented work such as the notions of quantum mechanics, a generalization of the open
quantum walk (OQW) model and the notion of quantum transition operation matrix (TOM).
Subsequently we provide the methods of constructing the generalized open quantum walks on
Apollonian networks and discuss some particular cases. Finally, we provide the concluding
remarks and suggest a direction for further work.

Preliminaries

Apollonian networks
Apollonian networks are named after Apollonius of Perga, who introduced the problem of
space filling by packing spheres [23, 24]. The concept of Apollonian networks was introduced
by Andrade et al. [25] and by Doye and Massen in [26]. In [25] it was shown that it can be used
to describe force chains in polydisperse granular packings, whilst in [26] topological and spatial
properties of such networks are characterized and their application as model for networks of
connected energy minima is discussed.

The construction of a regular Apollonian network can be done by a recursive procedure. At
first, a complete 3-vertex graph is created, we call it the 0th generation Apollonian network. In
order to obtain the next generation network new nodes are inserted in the middle of each of
the triangles in the graph. Each of the new vertices is associated with three new edges connect-
ing it to the vertices of the corresponding triangle. Apollonian networks of generations zero to
three resulting from the algorithm are presented in the Fig 1.

Apollonian networks display some properties which make them a very useful tool for study-
ing effects in large complex networks. In particular they have the property of being scale-free
and small-world. They can be also embedded in Euclidean lattice, and show space filling and
matching graph properties.

Apollonian networks have been used in various areas of science. In particular, Andrade and
Herrmann [27] and Serva et al. [28] investigated the properties of Ising models on Apollonian
network. It was also suggested that Apollonian networks can be harnessed to mimic a behav-
iour of neuronal systems in the brain [29]. Random Apollonian networks [30] were introduced
as a model for real-world planar graphs. Their high-dimensional generalizations were also pro-
posed in [31]. The properties of random Apollonian networks were studied in [32] in the con-
text of web graphs.

Various researchers considered walks on Apollonian networks. For example Huang et al.
[12] studied classical random walks on these networks. Random walks on Apollonian networks
with defects were considered by Zang et al. [33].

Discrete time quantum walks on Apollonian networks were studied by Souza and Andrade
in [34], where a comparison of the introduced model with its classical counterpart was pro-
vided. Xu et al. [35] studied the properties of coherent exciton transport on Apollonian net-
works with dynamics modelled by continuous-time quantum walks. Finally, Sadowski [36] has
recently provided an efficient implementation of the quantum search algorithm exploiting the
structure of Apollonian networks.

In all of these papers Apollonian networks served as a useful tool for studying properties of
various walk models. We utilise Apollonian networks for the same purpose. However, the
models considered in the above-mentioned papers are not directly connected with the OQW
model and thus the results are not directly comparable. In particular, the aforementioned
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papers focus on unitary system dynamics, whereas our model allows for implementation of
general quantum operations.

Open quantum walks
Following [15] we recall the notion of Open QuantumWalks. The model of the open quantum
walk was introduced by Attal et al. [13] (see also [37]). In order to describe the model, we con-
sider a walk on a graph with the set of vertices V and directed edges {(i, j): i, j 2 V}. The dynam-
ics on the graph is described by the space of statesH2 = C

V with the orthonormal basis

fj iigjVj�1

i¼0 . We describe an internal degree of freedom of the walker by attaching a Hilbert space
H1 to each vertex of the graph. Hence, the state of the quantum walker is described by the ele-
ment of the space L(H1 �H2).

Let us imagine a single quantum particle wandering through the vertices of a graph. In dis-
crete moments of time, the particle hops from one vertex i to another vertex j. With each

Fig 1. An illustration of the construction of an Apollonian network.Red squares illustrate the nodes in the 0th generation, an orange hexagon in the 1st

generation, blue circles in the 2nd generation and green pentagons in the 3rd generation.

doi:10.1371/journal.pone.0130967.g001
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transition the quantum state of the particle is changed by a quantum operation associated with
the edge (i, j). With each step the particle can, but does not have to, hop to all neighbours of
vertex i. Thus, after several steps the particle may become “smeared” over the vertices of the
graph.

Quantum states and quantum channels
In the following we recall the standard notions of quantum mechanics that are essential for
understanding the content of this paper.

Definition 1 Linear Hermitian operator ρ 2 L(H) that is positive semi-definite (ρ� 0) and
has a trace lesser or equal to one (Tr(ρ)� 1) is called a sub-normalized quantum state. A set of
sub-normalized quantum states acting onH will be denoted as O�(H).

Definition 2 If a sub-normalized quantum state has a unit trace (Trρ = 1), then it is called a
quantum state. A set of quantum states acting onH will be denoted as O(H).

Definition 3 A linear map F:L(HI)! L(HO) is completely positive (CP) iff for some K it
can be written as

FðrÞ ¼
XK
k¼1

EkrE
y
k; ð1Þ

where Ek 2 L(HI,HO) are called Kraus operators and ρ 2 L(HI).
Definition 4 A linear map F:L(HI)! L(HO) is trace non-increasing (TNI) iff

TrðFðrÞÞ � 1; 8r 2 OðHIÞ: ð2Þ

Definition 5 A linear map F:L(HI)! L(HO) is trace preserving (TP) iff

TrðFðrÞÞ ¼ 1; 8r 2 OðHIÞ: ð3Þ

Definition 6 A linear map F that is completely positive and trace non-increasing (CP-TNI) is
called a quantum operation.

Definition 7 A linear map F that is completely positive and trace preserving (CP-TP) is called
a quantum channel.

Remark 1 CP-TNI map given by Kraus operators Ek 2 L(HI,HO) fulfills the conditionP
kE

y
kEk � 1HO

, accordingly CP-TP fulfills the condition
P

kE
y
kEk ¼ 1HO

[38].

Definition 8Mapping μ:O! F from a finite set of measurement outcomes O ¼ foigN
i¼1 into

a set of measurement operators F ¼ fAi : Ai 2 LðHI ;HOÞgNi¼1 that fulfills the following relation

XN
i¼1

Ay
i Ai ¼ 1HO

ð4Þ

is called a quantum measurement. Probability pi of measuring the outcome oi in the state ρ is

given by pi ¼ TrðAirA
y
i Þ. Given the measurement outcome oi the sub-normalized quantum state

after the measurement μ is given by roi
¼ AirA

y
i .

In this work we limit ourselves to square projective orthonormal measurement operators
i.e. Ai 2 L(HI), A2

i ¼ Ai for all i 2 1, . . ., N and for all i, j 2 1. . ., N Ai Aj = δij Ai.
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Generalized open quantum walks
To formally describe the dynamics of the generalized open quantum walk we introduce a quan-
tum operation Eij, for each edge (j, i). This operation describes the change in the internal degree
of freedom of the walker due to the move from vertex j to vertex i. We impose the limitation
that the sum of all quantum operations associated with the edges leaving vertex j form a quan-
tum channel.

To describe generalized open quantum walks we use the notion of Transition Operation
Matrices, introduced in [39], which provides a generalization of stochastic matrices.

Definition 9 Sub-Transition Operation Matrix (sub-TOM) E ¼ fE ijgM;N

i;j¼1
is a matrix of

completely-positive trace non-increasing (CP-TNI) maps such that

81�j�N

XM
i¼1

E ij ¼ Fj; ð5Þ

where Fj are completely positive trace non-increasing (CP-TNI) maps.
Definition 10 Transition Operation Matrix (TOM) is a sub-TOM with every Fj being a

completely positive trace preserving (CP-TP) map.
In this work we will only consider square TOMs, therefore in what follows we assumeM =

N. For the sake of simplicity we assume that all operators Eij:L(H1)! L(H1) act on qudits of
dimension dimH1 and produce qudits of the same dimension.

Remark 2 If E ¼ fE ijgM;K

i;j¼1
and F ¼ fF ijgK;Ni;j¼1

are TOMs, then their product G = EF is also a

TOM such that Gij ¼
PK
k¼1

E ikF kj [39]. Accordingly, a product of two sub-TOMs is also a sub-

TOM.
With TOM E one can associate a QuantumMarkov chain according to the following

definition.
Definition 11 QuantumMarkov chain is a finite directed graph G = (E, V) labelled by Eij for

e 2 E and by zero operator for e 2 �E , with e 2 V × V.
QuantumMarkov chain can be represented as N × N TOM, where N = jVj. The state of

quantumMarkov chain is given by a vector state defined as follows.
Definition 12 Sub-vector state is a column vector α = (α1, α2, . . ., αN)

T such that αi are sub-

normalized quantum states i.e. αi 2 O�(H), and
PN

i¼1 ai 2 O�ðHÞ is a sub-normalised quan-
tum state.

Definition 13 Vector state is a sub-vector state for which
PN

i¼1 ai 2 OðHÞ is a quantum
state.

Action E(α(t)) of (sub-)TOM E on a (sub-)vector state α(t) at moment t produces (sub-)vec-
tor state α(t+1) at moment t+1. This action is obtained in the following way:

aðtþ1Þ
i ¼PN

j¼1 E ijðaðtÞj Þ. An example of a graph associated with a TOM is presented in Fig 2.

One should note that, in the case of one-dimensional internal state space, dimH1 = 1, the
operators Eij become real numbers and form a stochastic matrix and thus the introduced chain
is equivalent to the classical Markov chain.
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TOMs as quantum channels

Let E ¼ fE ijgN;N

i¼1;j¼1
be a TOM of dimensions N × N with elements acting on L(H1). Let each of

TOM’s elements Eij:L(H1)! L(H1) have Kraus operators fEkij
gKij

kij¼1
, where Ekij 2 L(H1) and

Kij 2 N+, therefore the action of the elements is given by E ijð�Þ ¼
PKij

kij¼1

Ekijij
� Ey

kij ij
.

Let us construct the set of operators fÊkijij
gKij;N;N

kij¼1;i¼1;j¼1
Êkijij

2 LðH1 �H2Þ in the form
Êkijij

¼ Ekijij
� j iihj j, where fj iigN

i¼1 and fj jigNj¼1 span computational orthonormal bases inH1.

Definition 14 A linear map FE:L(H1 �H2)! L(H1 �H2) associated with TOM E is

defined by the set of operators fÊkij ij
gKij;N;N

kij¼1;i¼1;j¼1
.

In what follows we show that, if map FE is associated with a TOM E, then it is CP-TP.

Fig 2. An example of a three state TOM E ¼ ½
E11 E12 E13

E21 E22 E23

E31 E32 E33

2
664

3
775�. Here αi-s in vertices denote sub-

normalized quantum states associated with respective vertices at the given moment of time, therefore the
state of the OQW can be described by a vector state α = (α1, α2, α3)

T.

doi:10.1371/journal.pone.0130967.g002
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Proposition 1 If a set of operators fEkijij
gKij ;N;N

kij¼1;i¼1;j¼1
forms a TOM then the set of operators

fÊkij ij
gKij ;N;N

kij¼1;i¼1;j¼1
forms a quantum channel.

Proof. To prove this claim it is sufficient to show that operators Êkij
fulfill the completeness

relation.

XN
i¼1

XN
j¼1

XKij

k¼1

Êy
kij ij
Êkij ij

¼
XN
i¼1

XN
j¼1

XKij
k¼1

ðEkijij
� jiihjjÞyðEkijij

� jiihjjÞ

¼
XN
i¼1

XN
j¼1

XKij
k¼1

Ey
kijij
Ekijij

� jjihjj

¼
XN
j¼1

XN
i¼1

XKij
k¼1

Ey
kijij
Ekijij

 !
� jjihjj

¼
XN
j¼1

1H1
� jjihjj

¼ 1H1�H2
:

Theorem 1 Let α = (α1, . . ., αj, . . ., αN)
T be a vector state. With α we associate a block diago-

nal quantum state

ra ¼
XN
j¼1

aj � jjihjj 2 OðH1 �H2Þ; ð6Þ

where N = dimH2. Accordingly let β = (β1, . . ., βi, . . ., βN)
T be a vector state with an associated

state

rb ¼
XN
i¼1

bi � jiihij 2 OðH1 �H2Þ: ð7Þ

Let FE be a quantum channel associated with TOM E and β = E(α), then

rb ¼ FEðraÞ: ð8Þ

Proof.

FEðraÞ ¼
XN
i¼1

XN
j¼1

XKij

kij¼1

Êkij ij
raÊ

y
kijij

¼
XN
i¼1

XN
j¼1

XKij

kij¼1

ðEkijij
� jiihjjÞðaj � jjihjjÞðEkijij

� jiihjjÞy

¼
XN
i¼1

XN
j¼1

XKij

kij¼1

Ekijij
ajE

y
kijij

� jiihij

¼
XN
i¼1

XN
j¼1

E ijðajÞ � jiihij ¼
XN
i¼1

bi � jiihij

¼ rb
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Remark 3 Generalized open quantum walks coincide with open quantum walks introduced
in [13] if all the operations have Kraus rank equal to one i.e. can be described with a single Kraus
operator.

Mean first passage time
There is a number of random walk properties that one can consider in order to analyse walk
behaviour. In this paper we focus on the properties commonly examined in the case of classical
homogeneous random walks i.e. walks with transition probabilities evenly distributed and
equal to 1/d for each vertex of degree d. In particular, we study the mean first passage time and
the average return time. The former one describes the average time it takes to make a move
between two fixed nodes.

Definition 15 The mean first passage time (MFPT) from vertex i to vertex j is defined as the
average time for the walker to reach vertex j starting from vertex i:

Tij ¼
X1
t¼1

tPijðtÞ; ð9Þ

where Pij(t) is the first passage probability from i to j after time t.
Definition 16 The average return time (ART) Tii is the mean first passage time from vertex i

to itself.
It has been shown that, in the case of homogeneous classical random walks, the ART does

not depend on the structure of the network, but only on the degree of the vertex [11]. More
precisely, the ART in this case is given by:

Tii ¼
PN

j¼1 dj
di

; ð10Þ

where dj denotes the degree of the j
th vertex. On the other hand, the MFPT depends on the

structure of the network and Tij do not need be equal to Tji.

Quantummean first passage time
The classical notion of reaching a vertex does not have an appropriate quantum counterpart.
There are some subtleties that make defining a quantum analogue a troublesome task. The
main difficulty lies in the measurement problem.

Let us recall the picture with a single quantum particle wandering through a graph. Now we
can imagine that we have placed a measurement apparatus at each vertex of the graph. This
apparatus performs an arbitrary quantum measurement μ. If the quantum measurement is
trivial, i.e. μ(o) = 1H1

, then it allows only to check whether the particle is placed in a given ver-
tex. We can also choose a measurement that would tell us if the particle has a given property.

This is done using a measurement having two values:Pv;P
?
v ¼ 1H1

�Pv . Hereafter, we will

callPv the view operator.
Let us construct the following sub-TOM F based on a given TOM E such that:

F ¼ EP; ð11Þ
where P is diagonal sub-TOM with identity operators on the diagonal except element Pjj,

where Pjjð�Þ ¼ P?
v �P?

v .

Generalized Open QuantumWalks on Apollonian Networks
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Definition 17 The quantumMean First Passage Time (qMFPT) of (E, V, ρ0,Pv, i, j), where
E is a TOM, ρ0 2 O(H1) is a quantum state,Pv is a view operator and i, j 2 V is:

Qij ¼
X1
t¼1

TrðPva
ðtÞ
j Þt; ð12Þ

α(t) is given by:

aðtÞ ¼ Fðaðt�1ÞÞ; ð13Þ

and α(0) is a state vector with ρ0 at the i-th element and all other elements equal to zero.
Remark 4When dimH1 = 1, the open quantum walk reduces to a classical random walk.

Therefore the introduced notion of qMFPT reduces to the classical case as well.
Definition 18 The vertex-qMFPT of (E, V, ρ0,Pv, j) is:

Qj ¼
PjVj

i¼1;i 6¼j Qij

jV j � 1
; ð14Þ

where i, j 2 V.
Definition 19 The degree-qMFPT of (E, V, ρ0,Pv, d), where d 2 N is:

QðdÞ ¼
P

i2Vd
Qi

jVdj
; ð15Þ

where Vd � V is the set of all vertices with degree d.
Definition 20 The degree-qART of (E, V, ρ0,Pv, d), where d 2 N is:

QðdÞ
ART ¼

P
i2Vd

Qii

jVdj
; ð16Þ

where Vd � V is the set of all vertices with degree d.
Remark 5 In an Apollonian network, vertices of a given generation have equal degrees.

Remark 6 By Tj, T
(d) and T ðdÞ

ART we denote the classical vertex-MFPT, degree-MFPT and
degree-ART, respectively.

Remark 7 Calculating analytically the qMFPT as shown in Definition 17 is a complicated
problem. Thus, we turned to numerical simulations to obtain approximate results for a selected
number of test cases. In order to numerically calculate the qMFPT, we have to limit t in Eq (12)
to a finite value ts.We choose such a value that:

1�
Xts
t¼1

TrðPva
ðtÞ
j Þ < 10�6: ð17Þ

Discussion
Let us now focus our attention on the quantumness of the model introduced in the previous
section. In the following sections we provide a number of examples that allow the observation
of non-classical phenomena. However, it is not always the case. It is crucial to note that, with
appropriate TOM design, the walk mimics a classical one.

Remark 8 For any open quantum walk designed with the use of unitary transformations
exclusively the position probability distribution at each step of the walk is identical to the classical
counterpart.
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Moreover, the values of qMFPT and qART match the classical counterparts when the identity
1 view operator is considered regardless of the initial state.

Let us introduce a simple walk that allows tracking its evolution in detail in order to provide
an example of non-classical behaviour.

Simple example
As the first example we study the four-vertex Apollonian network with a walking qutrit. This
network is schematically depicted in Fig 3. We study three different view operators: A = jxihxj,
B = jyihyj, C = jzihzj, where A, B, C 2 L(C3) and

jxi ¼ ½1 1 1�T= ffiffiffi
3

p
; jyi ¼ ½1 o o2�T= ffiffiffi

3
p

; jzi ¼ ½1 o2 o4�T= ffiffiffi
3

p
; ð18Þ

with ω = e2πi/3. We choose the initial state of the walker to be the maximally mixed state local-
ized at the central vertex

að0Þ ¼ 0
C
3 ; 0

C
3 ; 0

C
3 ;
1

3
1
C
3

� �T

: ð19Þ

The probability distributions of measuring the particle depending on the view operators are
depicted in Fig 4. Note that in the initial state the particle is located in vertex three. After the
first step the behaviour becomes cyclic. Fig 4a shows the behaviour of the walker in the sub-
space associated with view operator A. Accordingly, Fig 4b shows the same result in the case of
view operator B and Fig 4c for the operator C. The complete behaviour of the walker is shown
in Fig 4d. In the first subspace we achieved a counter-clockwise walk on the external vertices.
In the second subspace, we achieved a clockwise walk on the external vertices. Both of these
walks have a period T = 3. In the third subspace we achieved an oscillating behaviour, between
the central and external vertices so the walk has a period of T = 2. Thus, the entire walk is peri-
odic with period T = 6. Hence we have shown that the evolution of the open quantum walk
heavily depends on the view operator.

Fig 3. Apollonian network with 4 vertices.Operators A, B andC are defined in the text.

doi:10.1371/journal.pone.0130967.g003
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The explicit form of TOM depicted in Fig 3 reads

E ¼

0LðC3Þ B � By A � Ay 1

3
C � Cy

A � Ay 0LðC3Þ B � By ðBþ C=
ffiffiffi
3

p Þ � ðBþ C=
ffiffiffi
3

p Þy

B � By A � Ay 0LðC3Þ ðAþ C=
ffiffiffi
3

p Þ � ðAþ C=
ffiffiffi
3

p Þy

C � Cy C � Cy C � Cy 0LðC3Þ

2
6666666664

3
7777777775
; ð20Þ

where Eij(�) = X�X† denotes a rank-one quantum operation. Using E and setting V = {0,1,2,3},
r0 ¼ 1

3
1
C
3 andPv equal to 1C3, j0ih0j, j1ih1j, j2ih2j, A, B or C we compute the qMFPTs and

qARTs of this open quantum walk as shown in Tables 1, 2, 3, 4 and 5. Value1means that the
state cannot be reached from a given initial state. The diagonal entries are the qARTs. For com-
parison in Table 6 we show the MFPTs and ARTs in the classical homogeneous random walks
on this graph. The “quantumness”—the non-classical behaviour—of the walk can be seen in
the view-conditioned qMFPTs.

The walk designed in this example is based on a non-bistochastic transition operators [38].
This allows us to demonstrate the sharp non-classical behaviour of the walk that can occur in
such case.

Experiments
The discussion above gives some insight on the relation between walk behaviour and its crucial
properties such as the TOM design, view operator form and the state chosen to define the

Fig 4. Open quantumwalk on an Apollonian network with 4 vertices. Each panel of this Figure shows the
behaviour of the network in subspaces associated with selected measurement operators. The size of the
vertices is proportional to the probability of measuring the walker in that vertex. The picture represents the
evolution after the first step of the walk. Panel (a) corresponds to Πv = A, panel (b) to Πv = B, panel (c) to Πv =
C and panel (d) to Πv = 1.

doi:10.1371/journal.pone.0130967.g004
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Table 2. qMFPTs from vertex i to vertex j (off-diagonal elements) and qARTs (diagonal elements) for
an open quantumwalk on a network shown in Fig 4 conditioned on the measurementsΠv = j0ih0j, Πv =
j1ih1j or Πv = j2ih2j and the initial state r0 ¼ 1

31C
3 .

j

0 1 2 3

i 0 5 5 5 5/4

1 5 5 5 5/4

2 5 5 5 5/4

3 5 5 5 5/4

doi:10.1371/journal.pone.0130967.t002

Table 1. qMFPTs from vertex i to vertex j (off-diagonal elements) and qARTs (diagonal elements) for
an open quantumwalk on a network shown in Fig 4 conditioned on the measurement Πv = 1C3 and the
initial state r0 ¼ 1

31C
3 .

j

0 1 2 3

i 0 3 3 3 1

1 3 3 3 1

2 3 3 3 1

3 3 3 3 1

doi:10.1371/journal.pone.0130967.t001

Table 3. qMFPTs from vertex i to vertex j (off-diagonal elements) and qARTs (diagonal elements) for
an open quantumwalk on a network shown in Fig 4 conditioned on the measurement Πv = A and the
initial state r0 ¼ 1

31C
3 .

j

0 1 2 3

i 0 2 1 2 1
1 2 2 1 1
2 1 2 2 1
3 2 3 1 1

doi:10.1371/journal.pone.0130967.t003

Table 4. qMFPTs from vertex i to vertex j (off-diagonal elements) and qARTs (diagonal elements) for
an open quantumwalk on a network shown in Fig 4 conditioned on the measurement Πv = B and the
initial state r0 ¼ 1

31C
3 .

j

0 1 2 3

i 0 2 2 1 1
1 1 2 2 1
2 2 1 2 1
3 2 1 3 1

doi:10.1371/journal.pone.0130967.t004

Generalized Open QuantumWalks on Apollonian Networks

PLOS ONE | DOI:10.1371/journal.pone.0130967 July 15, 2015 12 / 23



starting conditions. Now we discuss a series of experiments that illustrate the possibility of
obtaining non-classical behaviour in generalized open quantum walks considering these
properties.

We will rate the walk quantumness in the terms of the qMFPT and qART by analysing the
following cases:

• nearly classical walk where the quantum behaviour is initial state dependent,

• a walk based on a classical TOM for which the view operator determines the observed walk
properties,

• an open quantum walk that exhibits strong non-classical phenomena for any view operator.

Case 1—quantum counterpart
In this example we aim at constructing an OQWwhich resembles a classical randomwalk, differ-
ing from it only in some minor features. In order to achieve this, let us consider an open quantum
walk which by construction mimics the structure of classical homogeneous random walk on an
Apollonian network. By a homogeneous walk we understand a random walk for which the exit
probability from every vertex in any allowed direction is equal to one over the degree of the ver-
tex. In this example we will set the space associated with the integral degree of freedom of the
walker to be a qutrit space, i. e.H1 =C

3. The walk is constructed in the following way:

• For every edge outgoing from vertices in the last generation of the Apollonian network, we
assign TOM elements with two associated Kraus operators given by rescaled projections on
two mutually orthogonal subspaces so that condition in Def. 10 holds.

• Every other TOM element is a rescaled identity operator.

Table 5. qMFPTs from vertex i to vertex j (off-diagonal elements) and qARTs (diagonal elements) for
an open quantumwalk on a network shown in Fig 4 conditioned on the measurement Πv =C and the
initial state r0 ¼ 1

31C
3 .

j

0 1 2 3

i 0 5 6 6 1

1 6 5 6 1

2 6 6 5 1

3 5 5 5 1

doi:10.1371/journal.pone.0130967.t005

Table 6. MFPTs from vertex i to vertex j (off-diagonal elements) and ARTs (diagonal elements) for clas-
sical randomwalk on a network shown in Fig 4.

j

0 1 2 3

i 0 4 3 3 3

1 3 4 3 3

2 3 3 4 3

3 3 3 3 4

doi:10.1371/journal.pone.0130967.t006
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Specifically, each outgoing edge of the vertices in the last generation is assigned one of the
following pairs of Kraus operators:

P1 ¼ 1ffiffiffi
2

p j0ih0j; 1ffiffiffi
2

p j1ih1j
� �

;

P2 ¼ 1ffiffiffi
2

p j1ih1j; 1ffiffiffi
2

p j2ih2j
� �

;

P3 ¼ 1ffiffiffi
2

p j2ih2j; 1ffiffiffi
2

p j0ih0j
� �

:

ð21Þ

As each vertex in the last generation has degree d = 3, it is easily seen that this assignment ful-
fills Def. 10.

For the sake of clarity we will show the behavior of the walks on a 3rd generation Apollonian
network. In this case, we can write the assignment of pairs Eq (21) explicitly:

E1;0;7 ¼ j0ih0j= ffiffiffi
2

p
; E2;0;7 ¼ j1ih1j= ffiffiffi

2
p

; E1;1;7 ¼ j1ih1j= ffiffiffi
2

p
; E2;1;7 ¼ j2ih2j= ffiffiffi

2
p

;

E1;4;7 ¼ j2ih2j= ffiffiffi
2

p
; E2;4;7 ¼ j0ih0j= ffiffiffi

2
p

;

E1;0;8 ¼ j0ih0j= ffiffiffi
2

p
; E2;0;8 ¼ j1ih1j= ffiffiffi

2
p

; E1;4;8 ¼ j1ih1j= ffiffiffi
2

p
; E2;4;8 ¼ j2ih2j= ffiffiffi

2
p

;

E1;3;8 ¼ j2ih2j= ffiffiffi
2

p
; E2;3;8 ¼ j0ih0j= ffiffiffi

2
p

;

E1;1;9 ¼ j0ih0j= ffiffiffi
2

p
; E2;1;9 ¼ j1ih1j= ffiffiffi

2
p

; E1;4;9 ¼ j1ih1j= ffiffiffi
2

p
; E2;4;9 ¼ j2ih2j= ffiffiffi

2
p

;

E1;3;9 ¼ j2ih2j= ffiffiffi
2

p
; E2;3;9 ¼ j0ih0j= ffiffiffi

2
p

;

E1;1;10 ¼ j0ih0j= ffiffiffi
2

p
; E2;1;10 ¼ j1ih1j= ffiffiffi

2
p

; E1;2;10 ¼ j1ih1j= ffiffiffi
2

p
; E2;2;10 ¼ j2ih2j= ffiffiffi

2
p

;

E1;5;10 ¼ j2ih2j= ffiffiffi
2

p
; E2;5;10 ¼ j0ih0j= ffiffiffi

2
p

;

E1;1;11 ¼ j0ih0j= ffiffiffi
2

p
; E2;1;11 ¼ j1ih1j= ffiffiffi

2
p

; E1;5;11 ¼ j1ih1j= ffiffiffi
2

p
; E2;5;11 ¼ j2ih2j= ffiffiffi

2
p

;

E1;3;11 ¼ j2ih2j= ffiffiffi
2

p
; E2;3;11 ¼ j0ih0j= ffiffiffi

2
p

;

E1;2;12 ¼ j0ih0j= ffiffiffi
2

p
; E2;2;12 ¼ j1ih1j= ffiffiffi

2
p

; E1;5;12 ¼ j1ih1j= ffiffiffi
2

p
; E2;5;12 ¼ j2ih2j= ffiffiffi

2
p

;

E1;3;12 ¼ j2ih2j= ffiffiffi
2

p
; E2;3;12 ¼ j0ih0j= ffiffiffi

2
p

;

E1;0;13 ¼ j0ih0j= ffiffiffi
2

p
; E2;0;13 ¼ j1ih1j= ffiffiffi

2
p

; E1;2;13 ¼ j1ih1j= ffiffiffi
2

p
; E2;2;13 ¼ j2ih2j= ffiffiffi

2
p

;

E1;6;13 ¼ j2ih2j= ffiffiffi
2

p
; E2;6;13 ¼ j0ih0j= ffiffiffi

2
p

;

E1;2;14 ¼ j0ih0j= ffiffiffi
2

p
; E2;2;14 ¼ j1ih1j= ffiffiffi

2
p

; E1;6;14 ¼ j1ih1j= ffiffiffi
2

p
; E2;6;14 ¼ j2ih2j= ffiffiffi

2
p

;

E1;3;14 ¼ j2ih2j= ffiffiffi
2

p
; E2;3;14 ¼ j0ih0j= ffiffiffi

2
p

;

E1;0;15 ¼ j0ih0j= ffiffiffi
2

p
; E2;0;15 ¼ j1ih1j= ffiffiffi

2
p

; E1;6;15 ¼ j1ih1j= ffiffiffi
2

p
; E2;6;15 ¼ j2ih2j= ffiffiffi

2
p

;

E1;3;15 ¼ j2ih2j= ffiffiffi
2

p
; E2;3;15 ¼ j0ih0j= ffiffiffi

2
p

:

ð22Þ

The numbering of vertices follows the convention shown in Fig 1.
In this case we use the following initial state for calculating degree-qMFPT and degree-

qART: ρ0 = jxihxj, where j xi ¼ ½1 1 1�T= ffiffiffi
3

p
. For such an initial state we obtain the results dif-

fering from classical ones even when the view operator is equal to the identityPv = 1H1
. The

resulting degree-qMFPTs and degree-qARTs are shown in Tables 7 and 8 respectively. The
most significant difference from the classical set-up is that the degree-qARTs do not scale as 1

d
,

where d is the degree of the vertex. It should be noted that by the construction of the model,
when the initial state is a classical mixture r0 ¼ 1

3
1
C
3 , we can recover the classical behaviour.
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In the case of a walk defined mostly with the use of the identity operators the vast majority
of the transition operations is bi-stochastic. The disturbance is introduced in the last generation
nodes. We have shown that with a slight change of the walk structure and with an appropriate
initial state we observe a significant alteration of the walk and non-classical behaviour, even
without considering the view operator.

Case 2—measurement manipulation
In this case we aim to analyse the behaviour of a walk based on bi-stochastic operations exclu-
sively. In particular we investigate the behaviour in terms of qMFTP and qART values when a
variety of view operators is applied. We consider an open quantum walk on the fifth generation
Apollonian network, constructed as follows.

Let di be the degree of vertex i, the internal state space to be two-dimensionalH1 = C
2, G1,

G2 with G1 > G2 denote two different generations of the Apollonian networks, VG1
and VG2

be
the sets of vertices in generations G1 and G2, respectively. By i and j we denote vertices in gener-
ations G1 and G2, respectively, i.e. i 2 VG1

, j 2 VG2
. Then:

• For transitions from generation G1 to generation G2, we choose TOM elements equal to

E jiðrÞ ¼ 1
d sxrsx.

• For transitions from generation G2 to generation G1 we choose TOM elements equal to
E ijðrÞ ¼ 1

d szrsz.

• In the case of the zeroth generations there exist intra-generation transitions. Let us denote by
k, l 2 VG0

the vertices in this generation. For these transitions we assign a rescaled identity

operator EklðrÞ ¼ 1
d r.

Here, σx and σz are the Pauli matrices given by:

sx ¼
0 1

1 0

 !
; sz ¼

1 0

0 �1

 !
: ð23Þ

Table 7. Degree-(q)MFPTs for the classical and quantum for a walk on the Apollonian network of the
third generation. The TOM assignment is described in the text. Here, we putΠv = 1C3, ρ0 = jxihxj. We obtain
the behaviour different from the classical case.

d

3 6 9 12

Classical 30.35 15.87 9.47 6.33

Quantum 30.77 16.53 10.12 7.27

doi:10.1371/journal.pone.0130967.t007

Table 8. Degree-(q)ARTs for the classical and quantum for a walk on the Apollonian network of the
third generation. The TOM assignment is described in the text. Here, we putΠv = 1C3, ρ0 = jxihxj. We obtain
the behaviour different from the classical case. Notice that the degree-qART does not scale as 1

d.

d

3 6 9 12

Classical 28.00 14.00 9.33 7.00

Quantum 27.25 13.63 9.00 6.97

doi:10.1371/journal.pone.0130967.t008
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We use the following view operatorsPv: 1C2, j0ih0j, j+ih+j and jjihjj, with:

jþi ¼ 1ffiffiffi
2

p ðj0i þ j1iÞ;

jji ¼ 1ffiffiffi
2

p ðj0i þ ij1iÞ:
ð24Þ

In this case we choose the initial state to be r0 ¼ 1
2
1
C
2 .

The results for this case are shown in Fig 5. As all of the transition operators are bi-stochas-
tic, the walk exhibits exactly classical behaviour when the view operator equals to 1C2. Although
the view operators increase the value of degree-qMFPT, the values differ only by a constant fac-
tor. Hence the overall trend remains unchanged. As in the previous case, the main difference
between the classical and quantum set-ups lies in the degree-qARTs. Again, they do not scale
as 1

d
. Thus, the view operator is the key ingredient that allows the observation of non-classical

behaviour in the case of a walk with bi-stochastic transition operations.

Case 3—quantum effect
In this case we again consider non-bistochastic walk. The walk does not mimic a classical one
and thus we are able to obtain striking differences in terms of MFPT/ART behaviour. In this
case the transition operator assignment is also based on the generation of a vertex. More pre-
cisely, we divide vertices in the graph into classes. Each class is identified by the set of genera-
tions of the neighbouring vertices. As a result, each class corresponds to the vertices with
identical configuration of generations of neighbouring vertices.

Here we consider the 3rd generation of Apollonian network consisting of 16 vertices divided
into 5 classes as shown in Fig 6. This approach allows us the simplified assignment of opera-
tors, as the number of classes is significantly lower than the number of vertices and provides
strong symmetry of the network dynamics.

In order to design system dynamics we introduce two decompositions of the spaceH1 into
mutually orthogonal subspaces. For each subspace we choose an operator that acts on this sub-
space exclusively. In this example, we setH1 = C

4. We study two decompositions (x and z) of
H1 with the following operators:

Bx ¼ ð1
C
4 � sx � sxÞ=2; Cx ¼ ð1

C
4 þ sx � sxÞ=2; ð25Þ

and

Bz ¼ ð1
C
4 � sz � szÞ=2; Cz ¼ ð1

C
4 þ sz � szÞ=2: ð26Þ

For every possible pair of classes (c1, c2) we choose a set (with one or two elements in this

case) of Kraus operators fAðc1 ;c2Þ
1 ; . . . ;Aðc1 ;c2Þ

nc1 ;c2
g from {Bx, Cx, Bz, Cz}. In order to satisfy Def. 10,

we design transition operators assignment with two normalization rules. When the designed
assignment causes that, for some vertex in the network, there are (k) outgoing edges assigned

with the same operator all these operators are multiplied by the factor 1=
ffiffiffi
k

p
. For example each

vertex of the class 1 has 6 outgoing edges corresponding to the Cz operator: 3 neighbours of

class 0 and 3 neighbours of class 2. Thus we introduce 1=
ffiffiffi
6

p
normalization factor for the Að1;0Þ

1

and Að1;2Þ
1 operators as shown in Eq (27). Secondly, when the operators assigned as outgoing

from some class c correspond to two independent subspace decompositions all operators are

additionally multiplied by the factor 1=
ffiffiffi
2

p
. In this case classes 0 and 2 utilize both x and z

decomposition operators and thus the factor is present in Að0;jÞ
k and Að2;jÞ

k operators.
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Fig 5. Degree-(q)MFPTs and degree-(q)ARTs conditioned on the view operator. The labels denote the conditioning measurement operators.

doi:10.1371/journal.pone.0130967.g005

Generalized Open QuantumWalks on Apollonian Networks

PLOS ONE | DOI:10.1371/journal.pone.0130967 July 15, 2015 17 / 23



This gives us the following operator assignment, where A(i, j) is the operator assigned to
every transition from class i to j:

Að0;1Þ
1 ¼ Bz=2; Að1;0Þ

1 ¼ Cz=
ffiffiffi
6

p
; Að1;2Þ

1 ¼ Cz=
ffiffiffi
6

p
; Að2;1Þ

1 ¼ Bx=2;

Að0;2Þ
1 ¼ Cx=2; Að2;0Þ

1 ¼ Cz=2; Að1;3Þ
1 ¼ Bz=

ffiffiffi
6

p
; Að3;1Þ

1 ¼ Bx;

Að2;3Þ
1 ¼ Bx=

ffiffiffi
8

p
; Að3;2Þ

1 ¼ Cx=
ffiffiffi
2

p
; Að0;3Þ

1 ¼ Bz=
ffiffiffi
8

p
; Að3;0Þ

1 ¼ Cx=
ffiffiffi
2

p
;

Að2;4Þ
1 ¼ Bz=

ffiffiffi
2

p
; Að2;4Þ

2 ¼ Cx=
ffiffiffi
2

p
; Að4;2Þ

1 ¼ Cx;

Að0;4Þ
1 ¼ Cz=2; Að0;4Þ

2 ¼ Bx=
ffiffiffi
8

p
; Að4;0Þ

1 ¼ Bx=
ffiffiffi
2

p
;

Að0;0Þ
1 ¼ Bx=

ffiffiffi
8

p
:

ð27Þ

The class numbers correspond to those shown in Fig 6. The initial state is r0 ¼ 1
4
1
C
4 .

The numerical results are shown in Figs 7 and 8. This time we obtain qMFPTs conditioned
on the view operator which are significantly different from the classical ones. Furthermore, the
ARTs are no longer monotonic functions of the vertex degree d and the non-classicality is

Fig 6. The Apollonian network with 16 vertices (3rd generation) divided into 5 classes. The classes are
chosen based on the vertex generation and the generations of its neighbours. In this case, the green
pentagons and yellow pentagons are of the same generation, but belong to different classes. The numbers
denote the classes used in Eq (27).

doi:10.1371/journal.pone.0130967.g006
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Fig 7. Degree-(q)MFPTs conditioned on the view operator. Amissing bar indicates that the appropriate vertices are unreachable under the given view
operator. Panel (a)Πv = 1, panel (b)Πv = j0ih0j, panel (c) Πv = j1ih1j, panel (d) Πv = j2ih2j, panel (e) Πv = jxihxj, panel (f) Πv = jyihyj, panel (g)Πv = jzihzj.
doi:10.1371/journal.pone.0130967.g007
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Fig 8. Degree-(q)ARTs conditioned on the view operator. Panel (a)Πv = 1, panel(b)Πv = j0ih0j, panel(c)Πv = j1ih1j, panel(d)Πv = j2ih2j, panel(e) Πv =
jxihxj, panel(f) Πv = jyihyj, panel(g)Πv = jzihzj.
doi:10.1371/journal.pone.0130967.g008
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present regardless of the view operator. Moreover, some positions become unreachable when
the view operator is applied.

Conclusions
The main contribution of this work is the introduction of a generalized model of open quan-
tum walks, that is derived from the idea of QuantumMarkov Chains. We apply this model to
study the evolution of quantum walks on Apollonian networks that provides some insight on
the role of the network properties on the resulting quantum dynamics. We have also provided
definitions of mean first passage time and average return time for generalized open quantum
walks. We have calculated these quantities for several examples and compared them with the
classical case.

We have shown illustrative set-ups of exciton transport in Apollonian networks which can
lead to very non-trivial behaviour compared to ordinary quantum walks. In some cases we are
able to recover the classical behaviour, although in general the model allows for much richer
walker behaviour. Hence, the open quantum walk model can be used to explain non-trivial
behaviour not only in linear, but also in more complex topologies of the underlying graphs.
Furthermore, we have studied mean first passage times and average return times in this set-up.
These results differ significantly from a classical walk on these networks. The results allow us
theeasy creation of walks that visit certain vertices after a given time or omit a selected subset
of vertices.
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