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NOISE EFFECTS IN QUANTUM MAGIC SQUARES GAME
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In the article we analyse how noisiness of quantum channels can influence the magic
squares quantum pseudo-telepathy game. We show that the probability of success can
be used to determine characteristics of quantum channels. Therefore the game deserves
more careful study aiming at its implementation.
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1. Introduction

Quantum game theory, the subclass of game theory that involves quantum
phenomena,!'? lies at the crossroads of physics, quantum information processing,
computer and natural sciences. Thanks to entanglement, quantum players® can
sometimes accomplish tasks that are impossible for their classical counterparts. In
this paper we present the detailed analysis of one of the pseudo-telepathy games.?*
These games provide simple, yet nontrivial, examples of quantum games that can
be used to show the effects of quantum non-local correlations. Roughly speak-
ing, a game belongs to the pseudo-telepathy class if it admits no winning strategy
for classical players, but it admits a winning strategy provided the players share
the sufficient amount of entanglement. This phenomenon is called pseudo-telepathy,
because it would appear as magical to a classical player, yet it has quantum theo-
retical explanation.

2By a quantum player we understand a player that, at least in theory, can explore and make
profits from the quantum phenomena in situations of conflict, rivalry etc.
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Our main goal is to study the connection between errors in quantum channels
and the probability of winning in magic squares game. The magic square game is
selected because of its unique features: it is easy to show that there is no classical
winning strategy, simple enough for a layman to follow its course and feasible.

The paper is organized as follows. We will begin by presenting the magic squares
pseudo-telepathy game. The we will introduce tools we are using to analyse noise
in quantum systems. Then we will attempt to answer the following question: What
happens if a quantum game is played in non-perfect conditions because of the influ-
ence of quantum noise? The results showing the connection between the noise level
and the probability of winning will be given in Sec. 4. Finally we will point out
some issues that yet should be addressed.

2. Magic Square Game

The magic square is a 3 x 3 matrix filled with numbers 0 or 1 so that the sum of
entries in each row is even and the sum of entries in each column is odd. Although
such a matrix cannot exist® one can consider the following game.

There are two players: Alice and Bob. Alice is given the number of the row, Bob
is given the number of the column. Alice has to give the entries for a row and Bob
has to give entries for a column so that the parity conditions are met. In addition,
the intersection of the row and the column must agree. Alice and Bob can prepare
a strategy but they are not allowed to communicate during the game.

There exists a (classical) strategy that leads to winning probability of 8/9. If
parties are allowed to share a quantum state they can achieve probability 1.

In the quantum version of this game® Alice and Bob are allowed to share an
entangled quantum state.

The winning strategy is following. Alice and Bob share entangled state

W) = =(|0011) — [1100) — |0110) + [1001)). 1)

N =

Depending on the input (i.e. the specific row and column to be filled in) Alice and
Bob apply unitary operators A; ® I and I ® B, respectively,
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PTherefore the adjective magic is used.
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where 7 and j denote the corresponding inputs.
The final state is used to determine two bits of each answer. The remaining bits
can be found by applying parity conditions.

3. Quantum Noise

A interesting question arises: what happens if a quantum game is played in non-

perfect (real-world) conditions because of the presence of quantum noise.”®

In the most general case quantum evolution is described by superoperator ®,
which can be expressed using Kraus representation®:

O(p) =Y EppEy’, (4)
B

where Y, BBy = 1.
In following we will consider typical quantum channels, namely

e Depolarizing channel: {,/1 — %1[7 \/%aa:, \/%ay, \/%az}

e Amplitude damping: {[é \/1(1—&} , [8 \{)E}}
e Phase flip, bit flip and bit-phase flip with Kraus operators {v/1 —al, ao.},
{V1—=al,ao,} and {V/1—al, /ao,} respectively.

Real parameter « € [0, 1] represents here the amount of noise in the channel and
Oz, 0y, 0, are Pauli matrices.

In our scheme, the Kraus operators are of the dimension 2*. They are con-
structed from one-qubit operators e; by taking their tensor product over all n*
combinations of () indices

Ey = ®€ﬂ(i)7 (5)

where n is the number of Kraus operator for a single qubit channel.

3.1. The comparison of channels

Although one can assign physical meaning to the parameter «, this meaning can be
different for different channels. Therefore we are using channel fidelity” to compare
quantum channels.
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We define channel fidelity as:
A(®) = F(J(®), J(T)), (6)

where J is Jamiotkowski isomorphism and F' is the fidelity defined as F(p1, p2) =

tr(y/VPrpa/n) -

4. Results

In this section we are analysing the influence of the noise on success probability and
fidelity of non-perfect (mixed) quantum states in the case when the noise operator
is applied before the game gates.

4.1. Calculations

The final state of this scheme is p; = (4; ® B;) ®a(|¥)(¥|) (Al ® BI), where @,
is the superoperator realizing quantum channel parametrized by real number «.

Depolarizing channel:
{(i,4)]i,j =1,2,3} P je) = 1a*—2a°+3a?-2a+1.
Amplitude damping channel:

(Z',j)é {(171)7(172)7(273)7(373)} Pi,j(a) = %02_054_1
(1,7) € {(1,3)} P ila) = 202 —2a+1
(Z',j)é {(271)7(272)7(371)7(372)} Pi,j(a) = 052_%01_'_1

Phase damping channel:
(i,7) € {(1,1),(1,2),(2,3),(3,3)} Pijla) = 3a*—a+1
(4,5) € {(1,3)} Pijle) = 1
(7;7j)€ {(271)7(272)7(371)7(372)} Pi7.i(a) - —%Oz—l—l

Phase flip:
(i,7) € {(1,1),(1,2),(2,3),(3,3)} P jla) = 8a*—16a+12a®>—4a+1
(4,5) € {(1,3)} Pijla) = 1
(1,7) €{(2,1),(2,2),(3,1),(3,2)} P j(a) = 202 —2a+1
Bit flip:
(i,7) € {(1,1),(1,2),(3,1),(3,2)} Pj(@) = 2a°-2a+1
(4,7) € {(2,3)} Pijla) = 1
(4,7) € {(1,3),(2,1),(2,2),(3,3)} P jla) = 8a'—16a>+12a>—4a+1
Bit-phase flip:

(1,7) € {(1,1),(1,2),(2,1),(2,2)} P j(a) = 202 —2a+1
(4,5) € {(3,3)} Pijla) = 1
(1,7) €{(1,3),(2,3),(3,1),(3,2)} P j(a) = 8at —16a+12a° —4a+1

Fig. 1. Success probability for all combinations of magic squares game inputs for depolarizing,
amplitude damping, phase damping channels, phase, bit and bit-phase flip channels.



Noise Effects in Quantum Magic Squares Game 671

Probability P; j(«) is computed as the probability of measuring py in the state
indicating success

P j(a) =tr PfZ|€i><€i| ; (7)

where |£;) are the states that imply success.

4.2. Success probability

We compute success probability P; ;(«) for different inputs (¢, € {1,2,3}) and
different quantum channels. Our calculations show that mean probability of success,
Pla) = 2ijef1,2,3) Pij(@), heavily depends on the noise level o. The game results
for each combination of gates A;, B; for depolarizing, amplitude damping, phase
damping, phase, bit and bit-phase flip channels are listed in Fig. 1. Figure 2 presents
mean success probability P(«a) as the function of error rate.

In the case of depolarizing channel, the success probability as the function of
noise amount is the same for all the possible inputs. In the case of amplitude and
phase damping channels, wan can observe three different types of behaviour. These
functions are non-increasing for those channels. The bit, phase and bit-phase flip
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Fig. 2. Dephasing and damping channels cause monotonic decrease of mean success probability
in the function of noise amount. Amplitude damping channel causes the success function to attain
minimal probability of success for error rate 3/4. Flipping channels give symmetrical functions

with minimum for error rate 1/2.
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Fig. 3. The influence of noise on success probability, in case of different quantum channels is
compared by using the parametric plot of success probability P; j(a) versus quantum channel
fidelity A(®(«)) for o € [0, 1]. Note that plots for flipping channels and phase damping channel
overalp in range A(®(a)) € [1/16,1].

functions reach their minima for & = 1/2 and are symmetrical. This means that
high error rates influence the game weakly. One can easily see that in case of input
(1,3) the phase-flip channel does not influence the probability of success. The same
is true for input (2, 3) and bit flip channel and also for input (3, 3) and bit-phase flip
channel. Therefore it is possible to distinguish those channels by looking at success
probability of magic-squares game.

The graphical representation of dependency between mean success probability
and channel fidelity is presented in the form of parametric plot in Fig. 3.

5. Conclusion

We have shown how the probability success in magic squares pseudo-telepathy game
is influenced by different quantum noisy channels. The calculations show that, by
controlling noise parameter and observing probabilities of success, it is possible
to distinguish some channels. Thus we have shown that implementation of magic
square game can provide the example of channel distinguishing procedure.

In case of all channels success probability drops, with the increase of noise,
below classical limit of 8/9. Therefore the physical implementation of quantum
magic squares game requires high precision and can be a very difficult task.

We have also shown that if channel fidelity is higher than 1/10 the probability of
success is almost linear. Therefore channel fidelity is good approximation of success
probability for not very noisy channels.
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