
Tracedump: A Novel Single Application IP Packet Sniffer

PAWEŁ FOREMSKI a

aThe Institute of Theoretical and Applied Informatics of the Polish Academy of Sciences
pjf@iitis.pl

Abstract. The article introduces a novel Internet diagnosis utility - an open source IP packet
sniffer which captures TCP and UDP packets sent and received by a single Linux process only.
Preliminary evaluation results are presented. The utility can be applied in the field of IP traffic
classification.

Keywords: Computer networks, traffic monitoring, traffic classification, ptrace, code injection,
Linux.

1. Introduction

The Internet needs diagnosis and maintenance tools. One of the most valuable tools for a
network administrator is a packet sniffer, i.e. a computer program which intercepts IP packets flowing

in the network. The output of a sniffer gives insight into how exactly the network operates, and thus
can be useful for solving communication issues. For example, in order do diagnose a routing problem,

one would observe IP packets on inbound and outbound network interfaces of an Internet router.
Presence of network traffic on the inbound interface and absence on the outbound one would mean

that the router is not forwarding IP packets properly.

Problem statement

On a particular machine it is difficult to use a packet sniffer in order to capture IP packets
belonging to given application only, i.e. packets sent or received by a single process. This is caused by

the fact that the most popular sniffers were designed to be deployed on Internet routers, i.e. hosts
which rarely generate traffic on their own. A typical packet sniffer can monitor selected network

interface, but it lacks enough granularity in order to inspect a local process only. Unfortunately, it
seems that such direction in sniffer design influenced operating systems. In particular, the Linux

kernel lacks apparatus necessary for straightforward implementation of such functionality in packet
sniffers.

The ability of monitoring just a single application is important for several reasons. Original
motivation for this work is IP traffic classification using machine learning techniques [1], i.e.

development of a computer system which is able to automatically tell the name of application given
its IP packets. Before operation, such system needs to be trained using IP traffic trace files annotated

with so-called ground truth - name of the application that generated these packets. By employing a
single application packet sniffer, the problem of ground truth is resolved - name of the application is

known to the sniffer. In order to obtain an adequate quantity of training data, automation techniques
would need to be adopted for practical employment of such method. Synthetic traffic traces are of

limited usability, but may be very important during development of traffic analysis and classification
systems.

Proposed solution and its scope

This paper presents tracedump - a novel IP packet sniffer which intercepts packets belonging

to a single application only. It employs several techniques in order to mitigate the lack of necessary
mechanisms in the Linux kernel, particularly the ptrace(2) [2] system call and the BPF socket filter

[3]. The implementation currently supports only TCP and UDP protocols on a 32-bit x86 Linux host,
but the proposed approach can be easily applied to different transport protocols, architectures, and

possibly to other operating systems.
The sniffer attaches to a given process and to all of its threads and monitors its system calls

related to communication with the Internet. A list of local TCP and UDP ports is constructed and used
for filtering out all the traffic not belonging to the application under interest.

Paper organization

This paper is organized as follows. Section 2 reviews a few of the most popular packet

sniffers available on UNIX-like operating systems, considering their applicability for single
application monitoring and for traffic classification. Section 3 gives technical background for the

design of tracedump. Section 4 presents the internal architecture of the program. Section 5 gives
preliminary evaluation results. Section 6 gives a summary, suggesting issues for future work.

2. Related work

One of the most popular packet sniffers is tcpdump, accompanied by the libpcap library [4].
Originally written in 1987 at the Lawrence Berkeley National Laboratory, it was published a few

years later and quickly gained users attention. It runs on most UNIX-like operating systems - e.g.
Linux, BSD, Solaris - and on Windows. Since its inception, tcpdump was cited by numerous scientific

papers in the field of computer networks and is indeed the standard utility for capturing IP traffic. It
established an output file format PCAP, which is the most popular file format for storing IP packets

off-line, still developed to support new functionality [5]. The tcpdump sniffer features a command-
line filter mechanism, which allows the user to easily capture only the packets satisfying given

criteria, e.g. TCP packets with destination port number equal to 80. Unfortunately, this filter
mechanism does not support selecting packets of a single application only – especially if the

monitored process is a peer-to-peer application, allocating new ports each few seconds.
Another very popular packet sniffer, Wireshark [6], is a full-fledged GUI application with lots

of advanced features. Libtrace [7] aims at addressing weaknesses of the libpcap library. It supports
many input methods and formats, and provides a very good performance. However, none of them can

be employed to capture single application traffic.
In the field of traffic classification, there are two notable software utilities. F. Gringoli et al. in

[8] present a system for collecting traces of IP traffic, in which flows are annotated with the name of
the application that generated them. First, each host in a particular network submits a list of its own

connections - along with application names - to the border router of the network. Second, this router
captures all of the IP traffic flowing in and out of the network, and by employing the lists submitted

by each host, it annotates the resultant traffic trace file with appropriate ground truth data. Szabó et al.
proposed a similar approach for Windows machines in [9]. Again, none of these two approaches solve

the problem of single application diagnosis in a strict sense. They require a separate post-processing

stage, what disables possibility of real-time application connectivity diagnosis. They are also prone to
loosing IP packets at the beginning of connection, due to non-zero time needed for updating the list of

active connections on a particular machine.

3. Design Considerations

The original motivation for tracedump was the need to automatically collect samples of

network traffic generated by modern desktop applications, as a supportive element for traffic
classification systems. Therefore, special care must be taken not to loose any packets, especially those

at the beginning of an IP connection. Besides, possibility of capturing all of the DNS queries made by
an application may also be crucial for traffic classification purposes.

Let us analyze - in a simplified manner - how a Linux application makes a TCP connection
and sends data to a distant host. The operating system provides an API for Internet communication by

means of system calls socket(), connect(), and send(). Thus, the application first calls the socket()
function in order to get a unique handle for a connection. Then, the connect() function is called with

the address of the remote peer, and finally the send() system call may be used to send the data.
There are two crucial issues one needs to realize when constructing a packet sniffer of a

single application. First (A), the application does not handle construction of IP and transport protocol
headers - it is the task of the operating system. Hence, it is not enough to intercept the data passed as

arguments to system calls responsible for Internet communication. Second (B), a call to connect() will
generate packets before the call returns. Thus, a packet sniffer must react to connect() before it is

executed in the kernel.
Unfortunately, it is quite hard to mitigate these problems using existing mechanisms present

in the Linux kernel. One of the possible ways to write such a sniffer would be to extend the Linux
struct sk_buff structure with a pid member holding the process ID number. For outgoing packets, this

would be trivial, but for incoming packets it could be quite troublesome. However, such approach
would constrain the scope of software very much, due to necessity to patch and recompile the

operating system kernel.
It is possible to take care of (A) and (B) in user space, without modifying the kernel. A

straightforward procedure would be to exploit the dynamic linker ld.so [10] in order to provide
wrapper functions for system calls responsible for communication with the Internet. However, this

would fail for statically compiled program binaries, hence the tracedump sniffer implements the
ptrace() process tracing facility, as will be detailed in the next section.

4. Architecture and Implementation

Tracedump is divided into three functional modules, implemented as threads: ptrace, pcap,
and garbage collector (GC). The ptrace module attaches to all threads of a given process, and using

the Linux ptrace() function it constructs a list of all local TCP and UDP ports that the application is
using. The pcap module operates like an ordinary packet sniffer, intercepting all IP packets on all

network interfaces, at the kernel level - recall (A) from the previous section. Whenever the port list
changes, a BPF filter is immediately applied on the pcap sniffing socket, so that the packets not

belonging to the monitored application are ignored. The BPF filter is updated before the kernel

executes the original system call - recall (B). The task of the garbage collector module is to detect
ports that are no longer used. Each minute it reads the list of all active system connections, and it

cleans up the list constructed by the ptrace thread. The architecture of tracedump is depicted on Fig.
4.1.

The ptrace module traces only three system calls: bind(), connect(), and sendto(). By means
of analysis of the Linux kernel source code and by examination of the usual path a user-space

program needs to adopt in order to setup an Internet connection, it was verified that - for proposed
tracedump architecture - this is enough in order not to loose any IP packets. For UDP and TCP

servers, the application needs to call bind() in order to setup the local port number. For client
programs, it will either call connect() or sendto(). In such case it may happen that the local port

number is not yet assigned, and the kernel will perform an “autobind” operation, i.e. allocate an
ephemeral port automatically. However, due to (B), this is an undesirable situation, so tracedump

splits the system call in such case. It forces the process to first call bind() with the port argument set to
0, i.e. it requests the automatic allocation to be executed. Then, the BPF filter is updated, and finally

the original call - either connect() or sendto() - is continued. This is realized using machine code
injection into the stack area of the monitored process.

The pcap thread attaches to the kernel using a PF_PACKET [11] socket, and writes captured
packets to disk in the PCAP [12] format. Whenever the list of local ports is changed, the BPF filter

code is immediately rewritten and sent to the kernel using setsockopt() system call.
A naïve solution to tracking local port numbers that the application no longer uses would be

to intercept close() system calls. Unfortunately, it is not possible to distinguish a close() call which
effectively ends a connection from a close() call which only dissolves an association between a file

descriptor and a socket number. The latter may happen in case of multi-threaded applications, which
may - or may not - share the file descriptor table amongst its threads. This depends on the detailed

Fig. 4.1: Architecture of tracedump. The port list is constructed by
observing the kernel-userspace communication and is used
for raw IP packet capture. The garbage collector (gc)
thread periodically cleans up the list.

configuration of a particular thread, which is difficult to discover on a Linux machine. Thus,

tracedump utilizes the conventional procfs network diagnosis interface, i.e. the /proc/net/tcp and
/proc/net/udp special files. This interface is quite slow, hence a separate garbage collector thread is

required in order to continuously read these files in an asynchronous manner.

5. Evaluation

Tracedump has a simple command-line interface. Either a process ID number or a command
is accepted as the program argument. The output is a PCAP file, which may be further post-processed

with traffic analysis tools like Wireshark. It is possible to visually examine the IP packets in real-time,
by adopting the UNIX pipe mechanism.

On Listing 5.1 below an exemplary application of tracedump is presented.

1. root@pjf:~# tracedump ctorrent ubuntu-11.10-alternate-i386.iso.torrent
2. pcap_init(): Writing packets to dump.pcap
3. (...)
4. Total: 673 MB
5. Creating file "ubuntu-11.10-alternate-i386.iso"
6. Press 'h' or '?' for help (display/control client options).
7. | 3/0/754 [1346/1347/1347] 672MB,0MB | 2157,0K/s | 1724,0K E:0,1
8. Download complete.

Listing 5.1: Using tracedump to capture BitTorrent traffic. A BitTorrent client ctorrent [13] is used for
downloading a CD disk ISO image.

In this example, an installation CD ISO disk image of a popular Linux distribution is
downloaded using the BitTorrent [14] protocol. Aim of this experiment is to roughly estimate the

overhead of the BitTorrent protocol, in order to present tracedump.
In line 1, tracedump is started so it monitors a BitTorrent client application downloading a

file. In line 2, the resultant PCAP file name is reported: dump.pcap. The download process

completes in 6 minutes, attaining an average throughput of ~2 MB/s. Table 5.1 presents brief

characteristics of the generated IP traffic, obtained using libtrace [7] utility programs.

The resultant ISO file is 705,998,848 bytes long, hence a rough overhead of the BitTorrent

protocol, including the network and transport protocols, is ~4.21% of the downloaded file size. Note
that this also includes all of the DNS queries made during the download process.

Table 5.1: Characteristics of BitTorrent IP traffic. Last column
presents number of transport protocol ports as a sum for
inbound and outbound traffic.

TCP
249,575 17,698,668

77
503,730 718,005,933

UDP
2 160

1
2 192

Total 753,309 735,704,953 78

Packets Bytes Ports

Outbound

Inbound

Outbound

Inbound

6. Conclusion

The article presents tracedump - a novel packet sniffer which intercepts IP packets of a single
Linux process only. The Linux kernel lacks appropriate mechanisms for straightforward

implementation of such utility. Thus, tracedump employs several advanced techniques in order to
mitigate these deficiencies: ptrace() system call, code injection and dynamic generation of BPF

assembler code for the Linux socket filter mechanism. The actual process of packet capture happens
at the kernel level, so the network and transport protocol headers are retained.

Initial results prove practical applicability of tracedump. In the paper, the BitTorrent protocol
overhead was roughly estimated by employing tracedump to capture IP packets of a BitTorrent client

application. Moreover, tracedump can be adopted in the field of IP traffic classification. Resultant
traffic trace files contain all of the DNS queries made by monitored applications, what opens an

interesting prospect for research on employing DNS context as a traffic classification feature.
Tracedump may also be employed as a general Internet diagnosis utility.

Current implementation of tracedump poses a few limits on the scope of practical
applications. It works only on 32-bit x86 Linux hosts and is limited to about 300 ports opened at the

same time. However, the architecture of tracedump leaves plenty of space for future work.
The source code of tracedump is published under terms of the GNU General Public License

and is available for download from the MuTriCs project website: http://mutrics.iitis.pl/tracedump

Acknowledgments

This work was supported by the Polish National Science Centre, under research grant nr
2011/01/N/ST6/07202 - project “MuTriCs” [1].

References

1. MuTriCs: Multilevel Traffic Classification, http :// mutrics . iitis . pl /

2. ptrace(2) manual page, http :// www . kernel . org / doc / man - pages / online / pages / man 2/ ptrace .2. html

3. S. McCanne, V. Jacobson, The BSD packet filter: a new architecture for user-level packet capture,

USENIX Winter 1993 Conference Proceedings (USENIX'93), 1993

4. tcpdump, http :// www . tcpdump . org /

5. L. Degioanni, F. Risso, G. Varenni, PCAP Next Generation Dump File Format, IETF, Internet-Draft

PCAP-DumpFileFormat, 2004

6. Wireshark, http :// www . wireshark . org /

7. S. Alcock, P. Lorier, R. Nelson, Libtrace: A Packet Capture and Analysis Library

8. F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, K.C. Claffy, GT: picking up the truth from

the ground for Internet traffic, ACM SIGCOMM Computer Communication Review, Vol. 39, No. 5,

pp. 13-18, Oct. 2009

9. G. Szabó, D. Orincsay, S. Malomsoky, I. Szabó, On the validation of traffic classification algorithms,

Proceedings of PAM'08, Springer-Verlag, 2008

10. ld.so(8) manual page, http :// www . kernel . org / doc / man - pages / online / pages / man 8/ ld . so .8. html

11. packet(7) manual page, http :// www . kernel . org / doc / man - pages / online / pages / man 7/ packet .7. html

12. PCAP file format, http://wiki.wireshark.org/Development/LibpcapFileFormat

13. ctorrent, http://ctorrent.sourceforge.net/

14. B. Cohen, The BitTorrent Protocol Specification, http://bittorrent.org/beps/bep_0003.html

http://mutrics.iitis.pl/
http://bittorrent.org/beps/bep_0003.html
http://ctorrent.sourceforge.net/
http://wiki.wireshark.org/Development/LibpcapFileFormat
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://mutrics.iitis.pl/
http://mutrics.iitis.pl/
http://mutrics.iitis.pl/
http://mutrics.iitis.pl/
http://mutrics.iitis.pl/
http://mutrics.iitis.pl/
http://mutrics.iitis.pl/

	Tracedump: A Novel Single Application IP Packet Sniffer
	1. Introduction
	2. Related work
	3. Design Considerations
	4. Architecture and Implementation
	5. Evaluation
	Tracedump has a simple command-line interface. Either a process ID number or a command is accepted as the program argument. The output is a PCAP file, which may be further post-processed with traffic analysis tools like Wireshark. It is possible to visually examine the IP packets in real-time, by adopting the UNIX pipe mechanism.
	On Listing 5.1 below an exemplary application of tracedump is presented.
	1. root@pjf:~# tracedump ctorrent ubuntu-11.10-alternate-i386.iso.torrent
	2. pcap_init(): Writing packets to dump.pcap
	3. (...)
	4. Total: 673 MB
	5. Creating file "ubuntu-11.10-alternate-i386.iso"
	6. Press 'h' or '?' for help (display/control client options).
	7. | 3/0/754 [1346/1347/1347] 672MB,0MB | 2157,0K/s | 1724,0K E:0,1
	8. Download complete.
	Listing 5.1: Using tracedump to capture BitTorrent traffic. A BitTorrent client ctorrent [13] is used for downloading a CD disk ISO image.
	In this example, an installation CD ISO disk image of a popular Linux distribution is downloaded using the BitTorrent [14] protocol. Aim of this experiment is to roughly estimate the overhead of the BitTorrent protocol, in order to present tracedump.
	In line 1, tracedump is started so it monitors a BitTorrent client application downloading a file. In line 2, the resultant PCAP file name is reported: dump.pcap. The download process completes in 6 minutes, attaining an average throughput of ~2 MB/s. Table 5.1 presents brief characteristics of the generated IP traffic, obtained using libtrace [7] utility programs.
	The resultant ISO file is 705,998,848 bytes long, hence a rough overhead of the BitTorrent protocol, including the network and transport protocols, is ~4.21% of the downloaded file size. Note that this also includes all of the DNS queries made during the download process.
	6. Conclusion
	Acknowledgments
	References

